Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Lab Invest ; 104(5): 102044, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38452903

RESUMO

Silent information regulator type-1 (SIRT1), a nicotinamide adenine dinucleotide+-dependent deacetylase, is a member of the sirtuins family and has unique protein deacetylase activity. SIRT1 participates in physiological as well as pathophysiological processes by targeting a wide range of protein substrates and signalings. In this review, we described the latest progress of SIRT1 in pulmonary diseases. We have introduced the basic information and summarized the prominent role of SIRT1 in several lung diseases, such as acute lung injury, acute respiratory distress syndrome, chronic obstructive pulmonary disease, lung cancer, and aging-related diseases.

2.
Transl Oncol ; 41: 101870, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38262108

RESUMO

Low expression levels of breast cancer metastasis suppressor 1 like (BRMS1L) have been associated with the growth of cancer cells. However, the mechanisms underlying the role of BRMS1L as an antitumour transcription factor in the progression of NSCLC have not been explored. Herein, we reveal that BRMS1L plays a key role as a tumour suppressor in inhibiting NSCLC proliferation and metastasis. Mechanistically, BRMS1L overexpression results in the downregulation of glutathione peroxidase 2 (GPX2) expression and consequently causes abnormal glutathione metabolism and increased levels of reactive oxygen species (ROS) in cells, inducing oxidative stress injury and apoptosis. Furthermore, overexpression of GPX2 enhances the growth advantage and oxidative stress repair conferred by knockdown of BRMS1L. Importantly, we show that low expression of BRMS1L in NSCLC cells causes relatively high levels of antioxidant accumulation to maintain cell redox balance and renders cancer cells more sensitive to treatment with piperlongumine as an ROS inducer both in vitro and in vivo. These findings offer new insights into the role of BRMS1L as a transcriptional repressor in NSCLC and suggest that the BRMS1L expression level may be a potential biomarker for predicting the therapeutic response to small molecule ROS inducers, providing new ideas for targeted therapy.

3.
Front Bioeng Biotechnol ; 11: 1322514, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38155924

RESUMO

Liver disease has emerged as a significant worldwide health challenge due to its diverse causative factors and therapeutic complexities. The majority of liver diseases ultimately progress to end-stage liver disease and liver transplantation remains the only effective therapy with the limitations of donor organ shortage, lifelong immunosuppressants and expensive treatment costs. Numerous pre-clinical studies have revealed that extracellular vesicles released by mesenchymal stem cells (MSC-EV) exhibited considerable potential in treating liver diseases. Although natural MSC-EV has many potential advantages, some characteristics of MSC-EV, such as heterogeneity, uneven therapeutic effect, and rapid clearance in vivo constrain its clinical translation. In recent years, researchers have explored plenty of ways to improve the therapeutic efficacy and rotation rate of MSC-EV in the treatment of liver disease. In this review, we summarized current strategies to enhance the therapeutic potency of MSC-EV, mainly including optimization culture conditions in MSC or modifications of MSC-EV, aiming to facilitate the development and clinical application of MSC-EV in treating liver disease.

4.
Chem Biol Interact ; 386: 110782, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37884181

RESUMO

Fine particulate matter (PM2.5) has attracted increasing attention due to its health-threatening effects. Although numerous studies have investigated the impact of PM2.5 on lung injuries, the specific mechanisms underlying the damage to the air-blood barrier after exposure to PM2.5 remain unclear. In this study, we established an in vitro co-culture system using lung epithelial cells and capillary endothelial cells. Our findings indicated that the tight junction (TJ) proteins were up-regulated in the co-cultured system compared to the monolayer-cultured cells, suggesting the establishment of a more closely connected in vitro system. Following exposure to PM2.5, we observed damage to the air-blood barrier in vitro. Concurrently, PM2.5 exposure induced significant oxidative stress and activated the NLRP3 inflammasome-mediated pyroptosis pathway. When oxidative stress was inhibited, we observed a decrease in pyroptosis and an increase in TJ protein levels. Additionally, disulfiram reversed the adverse effects of PM2.5, effectively suppressing pyroptosis and ameliorating air-blood barrier dysfunction. Our results indicate that the oxidative stress-pyroptosis pathway plays a critical role in the disruption of the air-blood barrier induced by PM2.5 exposure. Disulfiram may represent a promising therapeutic option for mitigating PM2.5-related lung damage.


Assuntos
Células Endoteliais , Piroptose , Espécies Reativas de Oxigênio/metabolismo , Células Endoteliais/metabolismo , Barreira Alveolocapilar/metabolismo , Dissulfiram , Material Particulado/toxicidade
5.
Ecotoxicol Environ Saf ; 254: 114699, 2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-36889212

RESUMO

Exposure to particulate matters with diameters below 2.5 µm (PM2.5) is considered a major risk factor for cardiovascular diseases (CVDs). The closest associations between PM2.5 and CVDs have been observed in hyperbetalipoproteinemia cases, although the detailed underpinning mechanism remains undefined. In this work, hyperlipidemic mice and H9C2 cells were used to examine the effects of PM2.5 on myocardial injury and their underlying mechanisms. The results revealed that PM2.5 exposure caused severe myocardial damage in the high-fat mouse model. Oxidative stress and pyroptosis were also observed along with myocardial injury. After inhibiting pyroptosis with disulfiram (DSF), the level of pyroptosis was effectively reduced as well as myocardial injury, suggesting that PM2.5 induced the pyroptosis pathway and further caused myocardial injury and cell death. Afterwards, by suppressing PM2.5-induced oxidative stress with N-acetyl-L-cysteine (NAC), myocardial injury was markedly ameliorated, and the upregulation of pyroptosis markers was reversed, which indicated that PM2.5-pyroptosis was also improved. Taken together, this study revealed that PM2.5 induce myocardial injury through the ROS-pyroptosis signaling pathway in hyperlipidemia mice models, providing a potential approach for clinical interventions.


Assuntos
Piroptose , Transdução de Sinais , Camundongos , Animais , Espécies Reativas de Oxigênio/metabolismo , Estresse Oxidativo , Material Particulado/toxicidade
6.
PeerJ Comput Sci ; 8: e1112, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36262140

RESUMO

Background: With the growth of trajectory data, the large amount of data causes a lot of problems with storage, analysis, mining, etc. Most of the traditional trajectory data compression methods are focused on preserving spatial characteristic information and pay little attention to other temporal information on trajectory data, such as speed change points or stop points. Methods: A data compression algorithm based on the spatio-temporal characteristics (CASC) of the trajectory data is proposed to solve this problem. This algorithm compresses trajectory data by taking the azimuth difference, velocity difference and time interval as parameters in order to preserve spatial-temporal characteristics. Microsoft's Geolife1.3 data set was used for a compression test to verify the validity of the algorithm. The compression results were compared with the traditional Douglas-Peucker (DP), Top-Down Time Ratio (TD-TR) and Opening Window (OPW) algorithms. Compression rate, the direction information of trajectory points, vertical synchronization distance, and algorithm type (online/offline) were used to evaluate the above algorithms. Results: The experimental results show that with the same compression rate, the ability of the CASC to retain the forward direction trajectory is optimal, followed by TD-TR, DP, and then OPW. The velocity characteristics of the trajectories are also stably retained when the speed threshold value is not more than 100%. Unlike the DP and TD-TR algorithms, CASC is an online algorithm. Compared with OPW, which is also an online algorithm, CASC has better compression quality. The error distributions of the four algorithms have been compared, and CASC is the most stable algorithm. Taken together, CASC outperforms DP, TD-TR and OPW in trajectory compression.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA