Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 147
Filtrar
1.
Tomography ; 10(3): 320-330, 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38535767

RESUMO

Cone-beam computed tomography (CBCT) is a widely used imaging technique in interventional radiology. Although CBCT offers great advantages in terms of improving comprehension of complex angioarchitectures and guiding therapeutic decisions, its additional degree of radiation exposure has also aroused considerable concern. In this study, we aimed to assess radiation exposure and its influential factors in patients undergoing CBCT scans of the head and abdomen during interventional procedures. A total of 752 patients were included in this retrospective study. Dose area product (DAP) and reference air kerma (RAK) were used as measures of patient dose. The results showed that the median values of DAP were 53.8 (50.5-64.4) Gy⋅cm2 for head CBCT and 47.4 (39.6-54.3) Gy⋅cm2 for that of the abdomen. Male gender and body mass index (BMI) were characterized by increased DAP and RAK values in both head and abdominal CBCT scans. Larger FOV size was associated with a higher DAP but a lower RAK value, especially in head CBCT scans. Exposure parameters under automatic exposure control (AEC) also varied according to patient BMI and gender. In conclusion, the patients received slightly higher radiation doses from head CBCT scans than from those applied to the abdomen. BMI, gender, and FOV size were the key factors that influenced the radiation dose administered to the patients during CBCT scans. Our results may help to define and minimize patients' exposure to radiation.


Assuntos
Exposição à Radiação , Tomografia Computadorizada de Feixe Cônico Espiral , Humanos , Masculino , Estudos Retrospectivos , Abdome , Tomografia Computadorizada de Feixe Cônico
2.
Eur J Med Chem ; 269: 116270, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38490062

RESUMO

Kelch-like proteins (KLHLs) are a large family of BTB-containing proteins. KLHLs function as the substrate adaptor of Cullin 3-RING ligases (CRL3) to recognize substrates. KLHLs play pivotal roles in regulating various physiological and pathological processes by modulating the ubiquitination of their respective substrates. Mounting evidence indicates that mutations or abnormal expression of KLHLs are associated with various human diseases. Targeting KLHLs is a viable strategy for deciphering the KLHLs-related pathways and devising therapies for associated diseases. Here, we comprehensively review the known KLHLs inhibitors to date and the brilliant ideas underlying their development.


Assuntos
Proteínas Culina , Ubiquitina-Proteína Ligases , Humanos , Proteínas Culina/metabolismo , Ubiquitinação , Ubiquitina-Proteína Ligases/metabolismo
3.
Bioorg Med Chem ; 102: 117677, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38457911

RESUMO

Immunotherapy has revolutionized the area of cancer treatment. Although most immunotherapies now are antibodies targeting membrane checkpoint molecules, there is an increasing demand for small-molecule drugs that address intracellular pathways. The E3 ubiquitin ligase Casitas B cell lymphoma­b (Cbl-b) has been regarded as a promising intracellular immunotherapy target. Cbl-b regulates the downstream proteins of multiple membrane receptors and co-receptors, restricting the activation of the innate and adaptive immune system. Recently, Cbl-b inhibitors have been reported with promising effects on immune surveillance activation and anti-tumor efficacy. Several molecules have entered phase Ⅰ clinical trials. In this review, the biological rationale of Cbl-b as a promising target for cancer immunotherapy and the latest research progress of Cbl-b are summarized, with special emphasis on the allosteric small-molecule inhibitors of Cbl-b.


Assuntos
Linfoma de Células B , Proteínas Proto-Oncogênicas c-cbl , Humanos , Proteínas Proto-Oncogênicas c-cbl/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Imunoterapia
4.
Eur J Med Chem ; 268: 116271, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38401187

RESUMO

Epigenetic modifications play crucial roles in physiological processes, including cell differentiation, proliferation, and death. Bromodomain/Brd-containing proteins (BCPs) regulate abnormal gene expression in various diseases by recognizing the lysine-ε-N-acetylated residues (KAc) or by acting as transcriptional co-activators. Small molecule inhibitors targeting BCPs offer an attractive strategy for modulating aberrant gene expression. Besides the extensive research on the bromodomain and extra-terminal (BET) domain family proteins, the non-BET proteins have gained increasing attention. Bromodomain containing protein 8 (BRD8), a reader of KAc and co-activator of nuclear receptors (NRs), plays a key role in various cancers. This review provides a comprehensive analysis of the structure, disease-related functions, and inhibitor development of BRD8. Opportunities and challenges for future studies targeting BRD8 in disease treatment are discussed.


Assuntos
Neoplasias , Humanos , Neoplasias/metabolismo , Fatores de Transcrição , Lisina , Domínios Proteicos , Proteínas que Contêm Bromodomínio
5.
Aging (Albany NY) ; 16(3): 2812-2827, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38319718

RESUMO

BACKGROUND: Bladder cancer (BCa) is a common malignancy in the urinary system. Necroptosis, a recently discovered form of programmed cell death, is closely associated with the development and progression of various types of tumors. Targeting necroptosis through anti-cancer strategies has shown potential as a therapy for cancer. We aimed to develop a necroptosis-related lncRNAs (NRlncRNAs) risk model that can predict the survival and tumor immunity of BCa patients. METHODS: We analyzed sequencing data obtained from the TCGA database, and applied least absolute shrinkage and selection operator (LASSO) and Cox regression analysis to identify crucial NRlncRNAs for building a risk model. Using the risk score, we categorized patients into high- and low-risk groups, and assessed the accuracy with the area under the receiver operating characteristic (AUROC) and Kaplan-Meier curves. We performed the RT-qPCR to detect the expression differences of the genes based on the risk model. RESULTS: We identified a total of 296 NRlncRNAs, and 6 of them were included in the prognostic model. The AUC values for 1-, 3-, and 5-year predictions were 0.675, 0.726 and 0.734, respectively. Our risk model demonstrated excellent predictive performance and served as an independent predictor with high predictive power. Additionally, we performed PCA, TMB, GSEA analyses, and evaluated immune cell infiltration, to reveal significant differences between the high- and low-risk groups in functional signaling pathways, immunological status, and mutation profiles. Finally, we assessed the chemotherapeutic response of several drugs. According to the RT-qPCR results, we found that four NRlncRNAs of the risk model were more highly expressed in BCa cell lines than human immortalized uroepithelial cell line and regulated the occurrence and progression of bladder cancer. CONCLUSION: We constructed a novel NRlncRNAs-associated risk model, which could predict the prognosis and immune response of BCa patients.


Assuntos
RNA Longo não Codificante , Neoplasias da Bexiga Urinária , Humanos , RNA Longo não Codificante/genética , Necroptose/genética , Neoplasias da Bexiga Urinária/genética , Prognóstico , Apoptose , Microambiente Tumoral/genética
6.
Cell Death Discov ; 10(1): 17, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38195664

RESUMO

Renal fibrosis is considered to be the ultimate pathway for various chronic kidney disease, with a complex etiology and great therapeutic challenges. Tripartite motif-containing (TRIM) family proteins have been shown to be involved in fibrotic diseases, but whether TRIM39 plays a role in renal fibrosis remain unexplored. In this study, we investigated the role of TRIM39 in renal fibrosis and its molecular mechanism. TRIM39 expression was analyzed in patients' specimens, HK-2 cells and unilateral ureteral obstruction (UUO) mice were used for functional and mechanistic studies. We found an upregulated expression of TRIM39 in renal fibrosis human specimens and models. In addition, TRIM39 knockdown was found efficient for alleviating renal fibrosis in both UUO mice and HK-2 cells. Mechanistically, we demonstrated that TRIM39 interacted with PRDX3 directly and induced ubiquitination degradation of PRDX3 at K73 and K149 through the K48 chain, which resulted in ROS accumulation and increased inflammatory cytokine generation, and further aggravated renal fibrosis. It provided an emerging potential target for the therapies of renal fibrosis.

7.
STAR Protoc ; 5(1): 102836, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38219150

RESUMO

Here, we present a protocol for rapidly isolating single cells from the mouse pancreas, minimizing damage caused by digestive enzymes in exocrine cells. We guide you through steps to optimize the dissection sequence, enzyme composition, and operational procedures, resulting in high yields of viable pancreatic single cells. This protocol can be applied across a wide range of research areas, including single-cell sequencing, gene expression profiling, primary cell culture, and even the development of spheroids or organoids. For complete details on the use and execution of this protocol, please refer to Jiang et al. (2023).1.


Assuntos
Pâncreas , Hormônios Pancreáticos , Animais , Camundongos , Dissecação , Células Epiteliais , Perfilação da Expressão Gênica
8.
Cell Mol Gastroenterol Hepatol ; 17(3): 321-346, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37898454

RESUMO

BACKGROUND & AIMS: The intestinal epithelium functions both in nutrient absorption and as a barrier, separating the luminal contents from a network of vascular, fibroblastic, and immune cells underneath. After injury to the intestine, multiple cell populations cooperate to drive regeneration of the mucosal barrier, including lymphatic endothelial cells (LECs). A population of granulocytic immature myeloid cells (IMCs), marked by Hdc, participate in regeneration of multiple organs such as the colon and central nervous system, and their contribution to intestinal regeneration was investigated. METHODS: By using male and female histidine decarboxylase (Hdc) green fluorescent reporter (GFP) mice, we investigated the role of Hdc+ IMCs in intestinal regeneration after exposure to 12 Gy whole-body irradiation. The movement of IMCs was analyzed using flow cytometry and immunostaining. Ablation of Hdc+ cells using the HdcCreERT2 tamoxifen-inducible recombinase Cre system, conditional knockout of Prostaglandin-endoperoxidase synthase 2 (Ptgs2) in Hdc+ cells using HdcCre; Ptgs2 floxed mice, and visualization of LECs using Prox1tdTomato mice also was performed. The role of microbial signals was investigated by knocking down mice gut microbiomes using antibiotic cocktail gavages. RESULTS: We found that Hdc+ IMCs infiltrate the injured intestine after irradiation injury and promote epithelial regeneration in part by modulating LEC activity. Hdc+ IMCs express Ptgs2 (encoding cyclooxygenase-2/COX-2), and enables them to produce prostaglandin E2. Prostaglandin E2 acts on the prostaglandin E2 receptor 4 receptor (EP4) on LECs to promote lymphangiogenesis and induce the expression of proregenerative factors including R-spondin 3. Depletion of gut microbes leads to reduced intestinal regeneration by impaired recruitment of IMCs. CONCLUSIONS: Altogether, our results unveil a critical role for IMCs in intestinal repair by modulating LEC activity and implicate gut microbes as mediators of intestinal regeneration.


Assuntos
Células Endoteliais , Intestinos , Células Mieloides , Proteína Vermelha Fluorescente , Regeneração , Animais , Feminino , Masculino , Camundongos , Ciclo-Oxigenase 2 , Prostaglandinas
9.
Eur J Med Chem ; 265: 116080, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38142510

RESUMO

Multiple sclerosis (MS) is a neuroinflammatory autoimmune disease and lacks effective therapeutic agents. Dysregulation of transcription mediated by bromodomain and extra-terminal domain (BET) proteins containing two different bromodomains (BD1 and BD2) is an important factor in multiple diseases, including MS. Herein, we identified a series of BD1-biased inhibitors, in which compound 16 showed nanomolar potency for BD1 (Kd = 230 nM) and a 60-fold selectivity for BRD4 BD1 over BD2. The co-crystal structure of BRD4 BD1 with 16 indicated that the hydrogen bond interaction of 16 with BD1-specific Asp145 is important for BD1 selectivity. 16 showed favorable brain distribution in mice and PK properties in rats. 16 was able to inhibit microglia activation and had significant therapeutic effects on EAE mice including improvement of spinal cord inflammatory conditions and demyelination protection. Overall, these results suggest that brain-permeable BD1 inhibitors have the potential to be further investigated as therapeutic agents for MS.


Assuntos
Esclerose Múltipla , Fatores de Transcrição , Ratos , Camundongos , Animais , Fatores de Transcrição/metabolismo , Proteínas Nucleares/metabolismo , Esclerose Múltipla/tratamento farmacológico , Domínios Proteicos , Encéfalo/metabolismo , Proteínas de Ciclo Celular/metabolismo
10.
J Hepatocell Carcinoma ; 10: 2239-2250, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38107543

RESUMO

Purpose: We aimed to develop a prognostic nomogram utilizing preoperative serum prealbumin levels to predict the overall survival (OS) in patients undergoing transarterial chemoembolization (TACE) for unresectable hepatocellular carcinoma (HCC). Patients and Methods: A total of 768 individuals with unresectable HCC who underwent TACE at three medical facilities in Suzhou between January 2007 December 2018 were included. The patient cohort was assigned to a training set (n = 461) and a validation set (n = 307). Cox regression analysis identified independent prognostic factors, which were then used to construct a prognostic nomogram. Internal validation was performed in the testing group, and its effectiveness and capability were evaluated with reference to the concordance index (C-index), area under the curve (AUC), calibration curve, and decision curve analysis (DCA). Results: Independent risk factors identified through Cox regression analyses included the BCLC stage, cirrhosis, invasion, tumor number, preoperative serum PALB, performance status (PS), and tumor size. The nomogram demonstrated a C-index of 0.734 (95% confidence interval (CI): 0.710-0.758) in the training set and 0.717 (95% CI: 0.678-0.756) in the validation set, indicating strong discriminatory ability. The nomogram also demonstrated favorable discriminatory performance with AUC values of 0.873, 0.820, and 0.833 for 1-, 2-, and 3-year OS, respectively, in the training set, and 0.854, 0.765, and 0.724 in the validation set. The AUC value of the nomogram (0.843) was significantly higher than that of the four conventional staging systems. Moreover, calibration graphs confirmed a strong concordance between the predicted and observed results. Furthermore, DCA underscored the significant clinical utility of the nomogram. Additionally, the low-risk group exhibited considerably superior rates of survival compared to the high-risk group. Conclusion: The developed nomogram demonstrated excellent prognostic capability, which served as a valuable tool for personalized clinical decision-making for patients with HCC.

11.
Cell Chem Biol ; 2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-38157852

RESUMO

Most BTB-containing E3 ligases homodimerize to recognize a single substrate by engaging multiple degrons, represented by E3 ligase KEAP1 dimer and its substrate NRF2. Inactivating KEAP1 to hinder ubiquitination-dependent NRF2 degradation activates NRF2. While various KEAP1 inhibitors have been reported, all reported inhibitors bind to KEAP1 in a monovalent fashion and activate NRF2 in a lagging manner. Herein, we report a unique bivalent KEAP1 inhibitor, biKEAP1 (3), that engages cellular KEAP1 dimer to directly release sequestered NRF2 protein, leading to an instant NRF2 activation. 3 promotes the nuclear translocation of NRF2, directly suppressing proinflammatory cytokine transcription. Data from in vivo experiments showed that 3, with unprecedented potency, reduced acute inflammatory burden in several acute inflammation models in a timely manner. Our findings demonstrate that the bivalent KEAP1 inhibitor can directly enable sequestered substrate NRF2 to suppress inflammatory transcription response and dampen various acute inflammation injuries.

12.
J Med Chem ; 66(23): 15944-15959, 2023 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-37983486

RESUMO

M6A (N6-methyladenosine) plays a significant role in regulating RNA processing, splicing, nucleation, translation, and stability. AlkB homologue 5 (ALKBH5) is an Fe(II)/2-oxoglutarate (2-OG)-dependent dioxygenase that demethylates mono- or dimethylated adenosines. ALKBH5 can be regarded as an oncogenic factor for various human cancers. However, the discovery of potent and selective ALKBH5 inhibitors remains a challenge. We identified DDO-2728 as a novel and selective inhibitor of ALKBH5 by structure-based virtual screening and optimization. DDO-2728 was not a 2-oxoglutarate analogue and could selectively inhibit the demethylase activity of ALKBH5 over FTO. DDO-2728 increased the abundance of m6A modifications in AML cells, reduced the mRNA stability of TACC3, and inhibited cell cycle progression. Furthermore, DDO-2728 significantly suppressed tumor growth in the MV4-11 xenograft mouse model and showed a favorable safety profile. Collectively, our results highlight the development of a selective probe for ALKBH5 that will pave the way for the further study of ALKBH5 targeting therapies.


Assuntos
Dioxigenases , Leucemia Mieloide Aguda , Humanos , Camundongos , Animais , Ácidos Cetoglutáricos , Dioxigenases/metabolismo , Pirimidinas/farmacologia , Pirimidinas/uso terapêutico , Leucemia Mieloide Aguda/tratamento farmacológico , Homólogo AlkB 5 da RNA Desmetilase/metabolismo , Proteínas Associadas aos Microtúbulos , Dioxigenase FTO Dependente de alfa-Cetoglutarato
13.
Comput Methods Programs Biomed ; 241: 107772, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37657148

RESUMO

BACKGROUND AND OBJECTIVE: Interpretable and real-time prediction of sepsis and risk factor analysis could enable timely treatment by clinicians and improve patient outcomes. To develop an interpretable machine-learning model for the prediction and risk factor analysis of sepsis and septic death. METHODS: This is a retrospective observational cohort study based on the Medical Information Mart for Intensive Care (MIMIC-IV) dataset; 69,619 patients from the database were screened. The two outcomes include patients diagnosed with sepsis and the death of septic patients. Clinical variables from ICU admission to outcomes were analyzed: demographic data, vital signs, Glasgow Coma Scale scores, laboratory test results, and results for arterial blood gasses (ABGs). Model performance was compared using the area under the receiver operating characteristic curve (AUROC). Model interpretations were based on the Shapley additive explanations (SHAP), and the clustered analysis was based on the combination of K-means and dimensionality reduction algorithms of t-SNE and PCA. RESULTS: For the analysis of sepsis and septic death, 47,185 and 2480 patients were enrolled, respectively. The XGBoost model achieved a predictive value of area under the curve (AUC): 0.745 [0.731-0.759] for sepsis prediction and 0.8 [0.77, 0.828] for septic death prediction. The real-time prediction model was trained to predict by day and visualize the individual or combined risk factor effects on the outcomes based on SHAP values. Clustered analysis separated the two phenotypes with distinct risk factors among patients with septic death. CONCLUSION: The proposed real-time, clustered prediction model for sepsis and septic death exhibited superior performance in predicting the outcomes and visualizing the risk factors in a real-time and interpretable manner to distinguish and mitigate patient risks, thus promising immense potential in effective clinical decision making and comprehensive understanding of complex diseases such as sepsis.


Assuntos
Cuidados Críticos , Sepse , Humanos , Estudos de Coortes , Análise Fatorial , Aprendizado de Máquina , Fatores de Risco , Sepse/diagnóstico
14.
Cell Stem Cell ; 30(8): 1091-1109.e7, 2023 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-37541213

RESUMO

While adult pancreatic stem cells are thought not to exist, it is now appreciated that the acinar compartment harbors progenitors, including tissue-repairing facultative progenitors (FPs). Here, we study a pancreatic acinar population marked by trefoil factor 2 (Tff2) expression. Long-term lineage tracing and single-cell RNA sequencing (scRNA-seq) analysis of Tff2-DTR-CreERT2-targeted cells defines a transit-amplifying progenitor (TAP) population that contributes to normal homeostasis. Following acute and chronic injury, Tff2+ cells, distinct from FPs, undergo depopulation but are eventually replenished. At baseline, oncogenic KrasG12D-targeted Tff2+ cells are resistant to PDAC initiation. However, KrasG12D activation in Tff2+ cells leads to survival and clonal expansion following pancreatitis and a cancer stem/progenitor cell-like state. Selective ablation of Tff2+ cells prior to KrasG12D activation in Mist1+ acinar or Dclk1+ FP cells results in enhanced tumorigenesis, which can be partially rescued by adenoviral Tff2 treatment. Together, Tff2 defines a pancreatic TAP population that protects against Kras-driven carcinogenesis.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Neoplasias Pancreáticas/genética , Fator Trefoil-2/metabolismo , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/metabolismo , Pâncreas/metabolismo , Células Acinares/metabolismo , Carcinogênese/genética , Carcinogênese/metabolismo
15.
J Agric Food Chem ; 71(36): 13284-13303, 2023 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-37646396

RESUMO

Acute kidney injury and chronic renal fibrosis are intractable pathological processes to resolve, yet limited strategies are able to effectively address them. Cardamonin (CAD) is a flavonoid with talented antioxidant, anti-inflammatory capacity, and satisfactory biosafety. In our study, animal and cellular models of renal ischemia/reperfusion (I/R) and unilateral ureteral obstruction (UUO) were successfully constructed to confirm whether CAD confers protective effects and underlying mechanisms. Animal experiments demonstrated that CAD application (100 mg/kg) distinctly ameliorated tissue damage and improved renal function. Meanwhile, the continuous oral administration of CAD after UUO surgery efficiently inhibited renal fibrosis as confirmed by hematoxylin-eosin (H&E), Sirius red, and Masson staining as well as the downregulated mRNA and protein expression of collagen I, α-smooth muscle actin (α-SMA), collagen III, and fibronectin. Interestingly, in transforming growth factor ß1 (TGF-ß1)-stimulated and hypoxia/reoxygenation (H/R)-exposed human kidney-2 (HK-2) cells, protective effects of CAD were again authenticated. Meanwhile, we performed bioinformatics analysis and constructed the "ingredient-target-pathway-disease" network to conclude that the potential mechanisms of CAD protection may be through the regulation of oxidative stress, inflammation, apoptosis, and mitogen-activated protein kinase (MAPK) pathway. Furthermore, experimental data validated that CAD evidently decreased the reactive oxygen species (ROS) production and malondialdehyde (MDA) content while depressing the mRNA and protein expression of inflammatory markers (tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and Il-1ß) and inhibiting apoptosis as evidenced by decreased levels of P53, BAX, cleaved caspase-3, and apoptotic rate in renal I/R and UUO models. In addition, the impact of CAD on restraining oxidative stress and inflammation was attributed to its ability to elevate antioxidant enzyme activities including catalase, superoxide dismutase 1 (SOD1), and superoxide dismutase 2 (SOD2) and to inhibit the inflammation-associated MARK/nuclear factor-κB (MAPK/NF-κB) signaling pathway. In conclusion, cardamonin restored the antioxidative capacity to block oxidative stress and suppressed the MAPK/NF-κB signaling pathway to alleviate inflammatory response, thus mitigating I/R-generated acute kidney injury/UUO-induced renal fibrosis in vivo and in vitro, which indicated the potential therapeutic advantage of cardamonin in attenuating acute and chronic kidney injuries.


Assuntos
Injúria Renal Aguda , Traumatismo por Reperfusão , Obstrução Ureteral , Animais , Humanos , Antioxidantes , NF-kappa B , Traumatismo por Reperfusão/tratamento farmacológico , Traumatismo por Reperfusão/genética
16.
Acta Cir Bras ; 38: e382523, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37556718

RESUMO

PURPOSE: To investigate the role of puerarin on renal fibrosis and the underlying mechanism in renal ischemia and reperfusion (I/R) model. METHODS: Rats were intraperitoneally injected with puerarin (50 or 100 mg/kg) per day for one week before renal I/R. The level of renal collagen deposition and interstitial fibrosis were observed by hematoxylin and eosin and Sirius Red staining, and the expression of α-smooth muscle actin (α-SMA) was examined by immunohistochemical staining. The ferroptosis related factors and TLR4/Nox4-pathway-associated proteins were detected by Western blotting. RESULTS: Puerarin was observed to alleviate renal collagen deposition, interstitial fibrosis and the α-SMA expression induced by I/R. Superoxide dismutase (SOD) activities and glutathione (GSH) level were decreased in I/R and hypoxia/reoxygenation (H/R), whereas malondialdehyde (MDA) and Fe2+ level increased. However, puerarin reversed SOD, MDA, GSH and Fe2+ level changes induced by I/R and H/R. Besides, Western blot indicated that puerarin inhibited the expression of ferroptosis related factors in a dose-dependent manner, which further demonstrated that puerarin had the effect to attenuate ferroptosis. Moreover, the increased expression of TLR/Nox4-pathway-associated proteins were observed in I/R and H/R group, but puerarin alleviated the elevated TLR/Nox4 expression. CONCLUSIONS: Our results suggested that puerarin inhibited oxidative stress and ferroptosis induced by I/R and, thus, delayed the progression of renal fibrosis, providing a new target for the treatment of renal fibrosis.


Assuntos
Ferroptose , Nefropatias , Traumatismo por Reperfusão , Ratos , Animais , Receptor 4 Toll-Like/metabolismo , Estresse Oxidativo , Traumatismo por Reperfusão/tratamento farmacológico , Traumatismo por Reperfusão/prevenção & controle , Traumatismo por Reperfusão/metabolismo , Isquemia , Fibrose , Superóxido Dismutase/metabolismo , NADPH Oxidase 4/metabolismo
17.
J Med Chem ; 66(14): 9325-9344, 2023 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-37441735

RESUMO

Oxidative stress has been implicated in a wide range of pathological conditions. The transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2) exerts a central role in regulating the cellular defense system against oxidative and electrophilic insults. Nonelectrophilic inhibition of the protein-protein interaction (PPI) between Kelch-like ECH-associated protein 1 (Keap1) and Nrf2 has become a promising approach to activate Nrf2. Recently, multiple drug discovery strategies have facilitated the development of small-molecule Keap1-Nrf2 PPI inhibitors with potent activity and favorable drug-like properties. In this Perspective, we summarize the latest progress of small-molecule Keap1-Nrf2 PPI inhibitors from medicinal chemistry insights and discuss future prospects and challenges in this field.


Assuntos
Química Farmacêutica , Fator 2 Relacionado a NF-E2 , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Descoberta de Drogas , Estresse Oxidativo
18.
Cancer Cell Int ; 23(1): 142, 2023 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-37468908

RESUMO

Numerous mechanisms have shown that long noncoding RNAs (lncRNAs) promote the development of colorectal cancer (CRC), but the role of lnc-LRRTM4 in the progression of CRC remains unclear. In this article, we found that lnc-LRRTM4 was highly expressed in CRC tissues and cell lines and that lnc-LRRTM4 could promote the proliferation and metastasis of CRC cells. These consequences were achieved by lnc-LRRTM4 directly binding to the promoter of LRRTM4 to induce its transcription. Moreover, lnc-LRRTM4 enhanced the growth of CRC cells in vivo by promoting cell cycle progression and reducing apoptosis. Taken together, our results revealed that lnc-LRRTM4 promotes the proliferation and metastasis of CRC cells, suggesting that it may be a potential diagnostic and therapeutic target for CRC.

19.
Bioorg Med Chem ; 90: 117373, 2023 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-37329678

RESUMO

N6-methyladenosine (m6A) is the most common mRNA modification in mammalians. The function and dynamic regulation of m6A depends on the "writer", "readers" and "erasers". YT521-B homology domain family (YTHDF) is a class of m6A binding proteins, including YTHDF1, YTHDF2 and YTHDF3. In recent years, the modification of m6A and the molecular mechanism of YTHDFs have been further understood. Growing evidence has shown that YTHDFs participate in multifarious bioprocesses, particularly tumorigenesis. In this review, we summarized the structural characteristics of YTHDFs, the regulation of mRNA by YTHDFs, the role of YTHDF proteins in human cancers and inhibition of YTHDFs.


Assuntos
Proteínas de Transporte , Neoplasias , Animais , Humanos , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , RNA Mensageiro/metabolismo , Fatores de Transcrição/metabolismo , Adenosina/química , Mamíferos/metabolismo , Neoplasias/tratamento farmacológico
20.
J Med Chem ; 66(13): 8725-8744, 2023 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-37382379

RESUMO

Neuropathic pain (NP) is an intolerable pain syndrome that arises from continuous inflammation and excitability after nerve injury. Only a few NP therapeutics are currently available, and all of them do not provide adequate pain relief. Herein, we report the discovery of a selective and potent inhibitor of the bromodomain and extra-terminal (BET) proteins for reducing neuroinflammation and excitability to treat NP. Starting with the screening hit 1 from an in-house compound library, iterative optimization resulted in the potent BET inhibitor DDO-8926 with a unique binding mode and a novel chemical structure. DDO-8926 exhibits excellent BET selectivity and favorable drug-like properties. In mice with spared nerve injury, DDO-8926 significantly alleviated mechanical hypersensitivity by inhibiting pro-inflammatory cytokine expression and reducing excitability. Collectively, these results implicate that DDO-8926 is a promising agent for the treatment of NP.


Assuntos
Descoberta de Drogas , Neuralgia , Camundongos , Animais , Descoberta de Drogas/métodos , Domínios Proteicos , Citocinas , Piridinas/farmacologia , Piridinas/uso terapêutico , Neuralgia/tratamento farmacológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA