Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
iScience ; 27(4): 109593, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38632987

RESUMO

Precise regulation of Type I interferon signaling is crucial for combating infection and cancer while avoiding autoimmunity. Type I interferon signaling is negatively regulated by USP18. USP18 cleaves ISG15, an interferon-induced ubiquitin-like modification, via its canonical catalytic function, and inhibits Type I interferon receptor activity through its scaffold role. USP18 loss-of-function dramatically impacts immune regulation, pathogen susceptibility, and tumor growth. However, prior studies have reached conflicting conclusions regarding the relative importance of catalytic versus scaffold function. Here, we develop biochemical and cellular methods to systematically define the physiological role of USP18. By comparing a patient-derived mutation impairing scaffold function (I60N) to a mutation disrupting catalytic activity (C64S), we demonstrate that scaffold function is critical for cancer cell vulnerability to Type I interferon. Surprisingly, we discovered that human USP18 exhibits minimal catalytic activity, in stark contrast to mouse USP18. These findings resolve human USP18's mechanism-of-action and enable USP18-targeted therapeutics.

2.
Transl Oncol ; 40: 101833, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38128467

RESUMO

Lung cancer remains a leading cause of cancer-related death, but scientists have made great strides in developing new treatments recently, partly owing to the use of genetically engineered mouse models (GEMMs). GEMM tumors represent a translational model that recapitulates human disease better than implanted models because tumors develop spontaneously in the lungs. However, detection of these tumors relies on in vivo imaging tools, specifically micro-Computed Tomography (micro-CT or µCT), and image analysis can be laborious with high inter-user variability. Here we present a deep learning model trained to perform fully automated segmentation of lung tumors without the interference of other soft tissues. Trained and tested on 100 3D µCT images (18,662 slices) that were manually segmented, the model demonstrated a high correlation to manual segmentations on the testing data (r2=0.99, DSC=0.78) and on an independent dataset (n = 12 3D scans or 2328 2D slices, r2=0.97, DSC=0.73). In a comparison against manual segmentation performed by multiple analysts, the model (r2=0.98, DSC=0.78) performed within inter-reader variability (r2=0.79, DSC=0.69) and close to intra-reader variability (r2=0.99, DSC=0.82), all while completing 5+ hours of manual segmentations in 1 minute. Finally, when applied to a real-world longitudinal study (n = 55 mice), the model successfully detected tumor progression over time and the differences in tumor burden between groups induced with different virus titers, aligning well with more traditional analysis methods. In conclusion, we have developed a deep learning model which can perform fast, accurate, and fully automated segmentation of µCT scans of murine lung tumors.

3.
Mol Cancer Ther ; 22(7): 891-900, 2023 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-37186518

RESUMO

KRAS is one of the most commonly mutated oncogenes in lung, colorectal, and pancreatic cancers. Recent clinical trials directly targeting KRAS G12C presented encouraging results for a large population of non-small cell lung cancer (NSCLC), but resistance to treatment is a concern. Continued exploration of new inhibitors and preclinical models is needed to address resistance mechanisms and improve duration of patient responses. To further enable the development of KRAS G12C inhibitors, we present a preclinical framework involving translational, non-invasive imaging modalities (CT and PET) and histopathology in a conventional xenograft model and a novel KRAS G12C knock-in mouse model of NSCLC. We utilized an in-house developed KRAS G12C inhibitor (Compound A) as a tool to demonstrate the value of this framework in studying in vivo pharmacokinetic/pharmacodynamic (PK/PD) relationship and anti-tumor efficacy. We characterized the Kras G12C-driven genetically engineered mouse model (GEMM) and identify tumor growth and signaling differences compared to its Kras G12D-driven counterpart. We also find that Compound A has comparable efficacy to sotorasib in the Kras G12C-driven lung tumors arising in the GEMM, but like observations in the clinic, some tumors inevitably progress on treatment. These findings establish a foundation for evaluating future KRAS G12C inhibitors that is not limited to xenograft studies and can be applied in a translationally relevant mouse model that mirrors human disease progression and resistance.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Animais , Camundongos , Humanos , Xenoenxertos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Proteínas Proto-Oncogênicas p21(ras)/genética , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Transplante Heterólogo , Modelos Animais de Doenças , Mutação
4.
Cytotherapy ; 24(8): 827-834, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35400595

RESUMO

BACKGROUND AIMS: Chimeric antigen receptor (CAR) T-cell therapy can be associated with significant toxicities. CAR-engineered natural killer (NK) cells provide a safer alternative while maintaining anti-tumor effects. Activated NK (aNK) cells are a clinical-grade cellular product obtained from the NK-92 cell line that have demonstrated both safety and potent cytotoxicity toward a wide range of cancers in phase 1 trials. Genetically engineered variants of aNK cells expressing a high-affinity Fc receptor (haNK) or co-expressing a CAR (t-haNK) are currently in phase 1/2 clinical trials. A key factor in the efficacy of cellular immunotherapies is biodistribution and tumor infiltration, which affect the local effector:target ratio. The chemokines CCL19 and CCL21 can drive recruitment of CCR7 receptor-expressing immune cells to secondary lymphoid organs. METHODS: Since NK-92 cells do not spontaneously express CCR7, clinical-grade aNK cells were transfected with a non-viral vector containing the CCR7 receptor, an anti-CD19 CAR and a high-affinity CD16 Fc receptor. RESULTS: CCR7-engineered CD19 t-haNK showed significant migration in vitro toward K562 cells engineered to secrete CCL19. This observation was confirmed in a NOD.Cg-PrkdcscidIl2rgtm1Wjl/SzJ (NSG) mouse model in which subcutaneous tumors of CCL19-expressing K562 cells displayed a higher number of infiltrating CCR7_CD19 t-haNK cells than CCR7-negative CD19 t-haNK cells. In NSG mice inoculated either intravenously or subcutaneously with CCL19-secreting Raji cells, treatment with CCR7_CD19 t-haNK improved survival and tumor control compared with CD19 t-haNK or vehicle. CONCLUSIONS: Expression of CCR7 receptor by off-the-shelf t-haNK cells improves their homing toward lymph node chemokines both in vitro and in vivo, resulting in superior tumor control.


Assuntos
Imunoterapia Adotiva , Linfoma , Receptores CCR7 , Animais , Antígenos CD19 , Linhagem Celular Tumoral , Quimiocina CCL19/genética , Quimiocina CCL19/metabolismo , Humanos , Imunoterapia Adotiva/métodos , Células Matadoras Naturais , Linfoma/terapia , Camundongos , Camundongos Endogâmicos NOD , Receptores CCR7/genética , Receptores CCR7/metabolismo , Receptores de Antígenos Quiméricos/metabolismo , Receptores Fc/metabolismo , Distribuição Tecidual
5.
MAbs ; 13(1): 1958662, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34347577

RESUMO

IL13Rα2 is a cell surface tumor antigen that is overexpressed in multiple tumor types. Here, we studied biodistribution and targeting potential of an anti-IL13Rα2 antibody (Ab) and anti-tumor activity of anti-IL13Rα2-antibody-drug conjugate (ADC). The anti-IL13Rα2 Ab was labeled with fluorophore AF680 or radioisotope 89Zr for in vivo tracking using fluorescence molecular tomography (FMT) or positron emission tomography (PET) imaging, respectively. Both imaging modalities showed that the tumor was the major uptake site for anti-IL13Rα2-Ab, with peak uptake of 5-8% ID and 10% ID/g as quantified from FMT and PET, respectively. Pharmacological in vivo competition with excess of unlabeled anti-IL13Rα2-Ab significantly reduced the tumor uptake, indicative of antigen-specific tumor accumulation. Further, FMT imaging demonstrated similar biodistribution and pharmacokinetic profiles of an auristatin-conjugated anti-IL13Rα2-ADC as compared to the parental Ab. Finally, the anti-IL13Rα2-ADC exhibited a dose-dependent anti-tumor effect on A375 xenografts, with 90% complete responders at a dose of 3 mg/kg. Taken together, both FMT and PET showed a favorable biodistribution profile for anti-IL13Rα2-Ab/ADC, along with antigen-specific tumor targeting and excellent therapeutic efficacy in the A375 xenograft model. This work shows the great potential of this anti-IL13Rα2-ADC as a targeted anti-cancer agent.


Assuntos
Aminobenzoatos , Antineoplásicos Imunológicos , Imunoconjugados , Subunidade alfa2 de Receptor de Interleucina-13 , Melanoma Experimental , Proteínas de Neoplasias , Oligopeptídeos , Aminobenzoatos/imunologia , Aminobenzoatos/farmacocinética , Aminobenzoatos/farmacologia , Animais , Antineoplásicos Imunológicos/imunologia , Antineoplásicos Imunológicos/farmacocinética , Antineoplásicos Imunológicos/farmacologia , Linhagem Celular Tumoral , Humanos , Imunoconjugados/imunologia , Imunoconjugados/farmacocinética , Imunoconjugados/farmacologia , Subunidade alfa2 de Receptor de Interleucina-13/antagonistas & inibidores , Subunidade alfa2 de Receptor de Interleucina-13/imunologia , Melanoma Experimental/tratamento farmacológico , Melanoma Experimental/imunologia , Camundongos , Camundongos Nus , Proteínas de Neoplasias/antagonistas & inibidores , Proteínas de Neoplasias/imunologia , Oligopeptídeos/imunologia , Oligopeptídeos/farmacocinética , Oligopeptídeos/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto
6.
PLoS One ; 16(6): e0252950, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34138905

RESUMO

Unlike the majority of cancers, survival for lung cancer has not shown much improvement since the early 1970s and survival rates remain low. Genetically engineered mice tumor models are of high translational relevance as we can generate tissue specific mutations which are observed in lung cancer patients. Since these tumors cannot be detected and quantified by traditional methods, we use micro-computed tomography imaging for longitudinal evaluation and to measure response to therapy. Conventionally, we analyze microCT images of lung cancer via a manual segmentation. Manual segmentation is time-consuming and sensitive to intra- and inter-analyst variation. To overcome the limitations of manual segmentation, we set out to develop a fully-automated alternative, the Mouse Lung Automated Segmentation Tool (MLAST). MLAST locates the thoracic region of interest, thresholds and categorizes the lung field into three tissue categories: soft tissue, intermediate, and lung. An increase in the tumor burden was measured by a decrease in lung volume with a simultaneous increase in soft and intermediate tissue quantities. MLAST segmentation was validated against three methods: manual scoring, manual segmentation, and histology. MLAST was applied in an efficacy trial using a Kras/Lkb1 non-small cell lung cancer model and demonstrated adequate precision and sensitivity in quantifying tumor growth inhibition after drug treatment. Implementation of MLAST has considerably accelerated the microCT data analysis, allowing for larger study sizes and mid-study readouts. This study illustrates how automated image analysis tools for large datasets can be used in preclinical imaging to deliver high throughput and quantitative results.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/diagnóstico por imagem , Neoplasias Pulmonares/diagnóstico por imagem , Interpretação de Imagem Radiográfica Assistida por Computador/métodos , Proteínas Quinases Ativadas por AMP , Animais , Carcinoma Pulmonar de Células não Pequenas/genética , Neoplasias Pulmonares/genética , Camundongos , Neoplasias Experimentais , Proteínas Serina-Treonina Quinases/genética , Proteínas Proto-Oncogênicas p21(ras)/genética , Carga Tumoral , Microtomografia por Raio-X
7.
Cancer Res ; 80(13): 2903-2913, 2020 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-32409308

RESUMO

CD8-expressing T cells are the main effector cells in cancer immunotherapy. Treatment-induced changes in intratumoral CD8+ T cells may represent a biomarker to identify patients responding to cancer immunotherapy. Here, we have used a 89Zr-radiolabeled human CD8-specific minibody (89Zr-Df-IAB22M2C) to monitor CD8+ T-cell tumor infiltrates by PET. The ability of this tracer to quantify CD8+ T-cell tumor infiltrates was evaluated in preclinical studies following single-agent treatment with FOLR1-T-cell bispecific (TCB) antibody and combination therapy of CEA-TCB (RG7802) and CEA-targeted 4-1BB agonist CEA-4-1BBL. In vitro cytotoxicity assays with peripheral blood mononuclear cells and CEA-expressing MKN-45 gastric or FOLR1-expressing HeLa cervical cancer cells confirmed noninterference of the anti-CD8-PET-tracer with the mode of action of CEA-TCB/CEA-4-1BBL and FOLR1-TCB at relevant doses. In vivo, the extent of tumor regression induced by combination treatment with CEA-TCB/CEA-4-1BBL in MKN-45 tumor-bearing humanized mice correlated with intratumoral CD8+ T-cell infiltration. This was detectable by 89Zr-IAB22M2C-PET and γ-counting. Similarly, single-agent treatment with FOLR1-TCB induced strong CD8+ T-cell infiltration in HeLa tumors, where 89Zr-Df-IAB22M2C again was able to detect CD8 tumor infiltrates. CD8-IHC confirmed the PET imaging results. Taken together, the anti-CD8-minibody 89Zr-Df-IAB22M2C revealed a high sensitivity for the detection of intratumoral CD8+ T-cell infiltrates upon either single or combination treatment with TCB antibody-based fusion proteins. These results provide further evidence that the anti-CD8 tracer, which is currently in clinical phase II, is a promising monitoring tool for intratumoral CD8+ T cells in patients treated with cancer immunotherapy. SIGNIFICANCE: Monitoring the pharmacodynamic activity of cancer immunotherapy with novel molecular imaging tools such as 89Zr-Df-IAB22M2C for PET imaging is of prime importance to identify patients responding early to cancer immunotherapy.


Assuntos
Anticorpos Biespecíficos/farmacologia , Linfócitos T CD8-Positivos/imunologia , Imunoterapia/métodos , Imagem Molecular/métodos , Tomografia por Emissão de Pósitrons/métodos , Neoplasias do Colo do Útero/imunologia , Zircônio/metabolismo , Animais , Anticorpos Biespecíficos/imunologia , Antígeno Carcinoembrionário , Feminino , Receptor 1 de Folato/imunologia , Humanos , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Compostos Radiofarmacêuticos/metabolismo , Células Tumorais Cultivadas , Neoplasias do Colo do Útero/metabolismo , Neoplasias do Colo do Útero/terapia
8.
Clin Cancer Res ; 22(6): 1403-12, 2016 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-26490315

RESUMO

PURPOSE: The inability to visualize cancer during prostatectomy contributes to positive margins, cancer recurrence, and surgical side effects. A molecularly targeted fluorescent probe offers the potential for real-time intraoperative imaging. The goal of this study was to develop a probe for image-guided prostate cancer surgery. EXPERIMENTAL DESIGN: An antibody fragment (cys-diabody, cDb) against prostate stem cell antigen (PSCA) was conjugated to a far-red fluorophore, Cy5. The integrity and binding of the probe to PSCA was confirmed by gel electrophoresis, size exclusion, and flow cytometry, respectively. Subcutaneous models of PSCA-expressing xenografts were used to assess the biodistribution and in vivo kinetics, whereas an invasive intramuscular model was utilized to explore the performance of Cy5-cDb-mediated fluorescence guidance in representative surgical scenarios. Finally, a prospective, randomized study comparing surgical resection with and without fluorescent guidance was performed to determine whether this probe could reduce the incidence of positive margins. RESULTS: Cy5-cDb demonstrated excellent purity, stability, and specific binding to PSCA. In vivo imaging showed maximal signal-to-background ratios at 6 hours. In mice carrying PSCA(+) and negative (-) dual xenografts, the mean fluorescence ratio of PSCA(+/-) tumors was 4.4:1. In surgical resection experiments, residual tumors <1 mm that were missed on white light surgery were identified and resected using fluorescence guidance, which reduced the incidence of positive surgical margins (0/8) compared with white light surgery alone (7/7). CONCLUSIONS: Fluorescently labeled cDb enables real-time in vivo imaging of prostate cancer xenografts in mice, and facilitates more complete tumor removal than conventional white light surgery alone.


Assuntos
Anticorpos Monoclonais/farmacologia , Fragmentos de Imunoglobulinas/farmacologia , Proteínas de Neoplasias/antagonistas & inibidores , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/cirurgia , Cirurgia Assistida por Computador , Animais , Antígenos de Neoplasias/metabolismo , Modelos Animais de Doenças , Corantes Fluorescentes , Proteínas Ligadas por GPI/antagonistas & inibidores , Proteínas Ligadas por GPI/metabolismo , Humanos , Masculino , Camundongos , Proteínas de Neoplasias/metabolismo , Imagem Óptica/métodos , Neoplasias da Próstata/imunologia , Neoplasias da Próstata/metabolismo , Cirurgia Assistida por Computador/métodos , Ensaios Antitumorais Modelo de Xenoenxerto
9.
Cancer Res ; 75(22): 4742-52, 2015 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-26471360

RESUMO

Malignant ascites is a common complication in the late stages of epithelial ovarian cancer (EOC) that greatly diminishes the quality of life of patients. Malignant ascites is a known consequence of vascular dysfunction, but current approved treatments are not effective in preventing fluid accumulation. In this study, we investigated an alternative strategy of targeting macrophage functions to reverse the vascular pathology of malignant ascites using fluid from human patients and an immunocompetent murine model (ID8) of EOC that mirrors human disease by developing progressive vascular disorganization and leakiness culminating in massive ascites. We demonstrate that the macrophage content in ascites fluid from human patients and the ID8 model directly correlates with vascular permeability. To further substantiate macrophages' role in the pathogenesis of malignant ascites, we blocked macrophage function in ID8 mice using a colony-stimulating factor 1 receptor kinase inhibitor (GW2580). Administration of GW2580 in the late stages of disease resulted in reduced infiltration of protumorigenic (M2) macrophages and dramatically decreased ascites volume. Moreover, the disorganized peritoneal vasculature became normalized and sera from GW2580-treated ascites protected against endothelial permeability. Therefore, our findings suggest that macrophage-targeted treatment may be a promising strategy toward a safe and effective means to control malignant ascites of EOC.


Assuntos
Anisóis/farmacologia , Ascite/prevenção & controle , Permeabilidade Capilar/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Neoplasias Epiteliais e Glandulares/complicações , Neoplasias Ovarianas/complicações , Pirimidinas/farmacologia , Animais , Ascite/etiologia , Carcinoma Epitelial do Ovário , Linhagem Celular Tumoral , Modelos Animais de Doenças , Feminino , Citometria de Fluxo , Humanos , Imuno-Histoquímica , Camundongos , Receptores de Fator Estimulador das Colônias de Granulócitos e Macrófagos/antagonistas & inibidores
10.
Clin Cancer Res ; 20(24): 6367-78, 2014 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-25326233

RESUMO

PURPOSE: Prostate stem cell antigen (PSCA) is highly expressed in local prostate cancers and prostate cancer bone metastases and its expression correlates with androgen receptor activation and a poor prognosis. In this study, we investigate the potential clinical applications of immunoPET with the anti-PSCA A11 minibody, an antibody fragment optimized for use as an imaging agent. We compare A11 minibody immunoPET to (18)F-Fluoride PET bone scans for detecting prostate cancer bone tumors and evaluate the ability of the A11 minibody to image tumor response to androgen deprivation. EXPERIMENTAL DESIGN: Osteoblastic, PSCA-expressing, LAPC-9 intratibial xenografts were imaged with serial (124)I-anti-PSCA A11 minibody immunoPET and (18)F-Fluoride bone scans. Mice bearing LAPC-9 subcutaneous xenografts were treated with either vehicle or MDV-3100 and imaged with A11 minibody immunoPET/CT scans pre- and posttreatment. Ex vivo flow cytometry measured the change in PSCA expression in response to androgen deprivation. RESULTS: A11 minibody demonstrated improved sensitivity and specificity over (18)F-Fluoride bone scans for detecting LAPC-9 intratibial xenografts at all time points. LAPC-9 subcutaneous xenografts showed downregulation of PSCA when treated with MDV-3100 which A11 minibody immunoPET was able to detect in vivo. CONCLUSIONS: A11 minibody immunoPET has the potential to improve the sensitivity and specificity of clinical prostate cancer metastasis detection over bone scans, which are the current clinical standard-of-care. A11 minibody immunoPET additionally has the potential to image the activity of the androgen signaling axis in vivo which may help evaluate the clinical response to androgen deprivation and the development of castration resistance.


Assuntos
Antígenos de Neoplasias , Fragmentos de Imunoglobulinas , Radioisótopos do Iodo , Proteínas de Neoplasias , Tomografia por Emissão de Pósitrons/métodos , Neoplasias da Próstata/diagnóstico , Antagonistas de Androgênios/administração & dosagem , Antagonistas de Androgênios/farmacologia , Animais , Antígenos de Neoplasias/imunologia , Antineoplásicos/administração & dosagem , Antineoplásicos/farmacologia , Benzamidas , Modelos Animais de Doenças , Progressão da Doença , Proteínas Ligadas por GPI/imunologia , Xenoenxertos , Humanos , Fragmentos de Imunoglobulinas/imunologia , Masculino , Camundongos , Proteínas de Neoplasias/imunologia , Nitrilas , Feniltioidantoína/administração & dosagem , Feniltioidantoína/análogos & derivados , Feniltioidantoína/farmacologia , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/imunologia , Distribuição Tecidual , Resultado do Tratamento , Carga Tumoral/efeitos dos fármacos , Microtomografia por Raio-X
11.
PLoS One ; 8(9): e73650, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24023896

RESUMO

Tumor-specific adenoviral vectors comprise a fruitful gene-based diagnostic imaging and therapy research area for advanced stage of cancer, including metastatic disease. However, clinical translation of viral vectors has encountered considerable obstacles, largely due to host immune responses against the virus. Here, we explored the utilization of an immunosuppressant, rapamycin, to circumvent the anti-adenovirus immunity in immunocompetent murine prostate cancer models. Rapamycin diminished adenoviral-induced acute immune response by inhibiting NF-κB activation; it also reduced the scale and delayed the onset of inflammatory cytokine secretion. Further, we found that rapamycin abrogated anti-adenovirus antibody production and retarded the function of myeloid cells and lymphocytes that were activated upon viral administration in pre-immunized hosts. Thus, the co-administration of rapamycin prolonged and enhanced adenovirus-delivered transgene expression in vivo, and thereby augmented the imaging capability of adenoviral vectors in both bioluminescent and positron emission tomography modalities. Furthermore, we showed that despite an excellent response of cancer cells to a cytotoxic gene therapeutic vector in vitro, only minimal therapeutic effects were observed in vivo in pre-immunized mice. However, when we combined gene therapy with transient immunosuppression, complete tumor growth arrest was achieved. Overall, transient immunosuppression by rapamycin was able to boost the diagnostic utility and therapeutic potentials of adenoviral vectors.


Assuntos
Adenoviridae/genética , Terapia de Imunossupressão/métodos , Imunossupressores/farmacologia , Imagem Molecular , Neoplasias da Próstata/diagnóstico , Neoplasias da Próstata/terapia , Sirolimo/farmacologia , Imunidade Adaptativa/efeitos dos fármacos , Animais , Linhagem Celular Tumoral , Ganciclovir/farmacologia , Terapia Genética/efeitos adversos , Vetores Genéticos/genética , Imunidade Inata/efeitos dos fármacos , Imunização , Masculino , Camundongos , Imagem Molecular/efeitos adversos , Neoplasias da Próstata/genética , Neoplasias da Próstata/imunologia , Segurança , Timidina Quinase/genética , Transgenes/genética
12.
J Control Release ; 166(1): 75-85, 2013 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-23247040

RESUMO

We sought to modify adenoviral (Ad) particles by incorporating the advantageous characteristics of non-viral gene delivery vehicles to complement the viral vectors. α-Amino acid-N-carboxyanhydride chemistry was used to synthesize homopolypeptides and diblock copolypeptides that possess well-defined secondary structures. Using cryo-electron and fluorescence microscopy, we showed that these polypeptides can coat the surfaces of Ad particles in a non-covalent manner to modify their transduction properties. The coated Ad particles were found to bind to and be internalized by cells. In contrast to reports using covalently PEGylated Ad particles, we found that our physically coated Ad hybrid complexes facilitate gene transfer both in vitro and in vivo. We showed that our polypeptide coating was able to shield the Ad particles from the neutralizing effect of antibodies and mitigate the binding of blood coagulation factor (Factor X) in vitro. The coating also reduced the antigenicity of Ad in immunocompetent mice. The biodistribution of the systemically administered hybrid complexes mirrored the behavior of both viral and non-viral vectors, exhibiting liver tropism as well as enhanced lung transduction. These data demonstrated that our non-covalent modification was able to alter Ad's interactions with cells and organs with retention of transduction efficiency. Advantages such as facile coating of the Ad vector, design flexibility and ease of attaching ligands to the polypeptides make this system potentially useful as a platform for adding functionalities to Ad to target cancer metastasis.


Assuntos
Adenoviridae/genética , Portadores de Fármacos/química , Técnicas de Transferência de Genes , Vetores Genéticos , Peptídeos/química , Transdução Genética , Animais , Anticorpos Antivirais/sangue , Linhagem Celular , Microscopia Crioeletrônica , Estabilidade de Medicamentos , Proteínas de Fluorescência Verde/genética , Humanos , Luciferases de Vaga-Lume/genética , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos SCID , Microscopia de Fluorescência , Tamanho da Partícula , Espalhamento de Radiação , Propriedades de Superfície
13.
Mol Ther ; 21(3): 554-60, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23247102

RESUMO

An imaging modality that can accurately discern prostate cancer (PCa) foci would be useful to detect PCa early or guide treatment. We have engineered numerous adenoviral vectors (Ads) to carry out reporter gene-based imaging using specific promoters to express a potent transcriptional activator, which in turn activates the reporter gene in PCa. This two-step transcriptional amplification (TSTA) method can boost promoters' activity, while maintaining cell specificity. Here, we examined a dual TSTA (DTSTA) approach, which utilizes TSTA not only to express the imaging reporter, but also to direct viral genome replication of a conditionally replicating Ad (CRAd) to further augment the expression levels of the reporter gene by genomic amplification supported in trans by coadministered CRAd. In vitro studies showed up to 50-fold increase of the reporter genome by DTSTA. Compared with TSTA reporter alone, DTSTA application exhibited a 25-fold increase in imaging signal in PCa xenografts. DTSTA approach is also beneficial for a combination of two TSTA Ads with distinct promoters, although amplification is observed only when TSTA-CRAd can replicate. Consequently, the DTSTA approach is a hybrid method of transcriptional and genomic augmentation that can provide higher level reporter gene expression potentially with a lower dose of viral administration.


Assuntos
Genes Reporter , Imagem Molecular/métodos , Neoplasias da Próstata/diagnóstico , Adenoviridae/genética , Animais , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Vetores Genéticos , Humanos , Masculino , Camundongos , Camundongos SCID , Regiões Promotoras Genéticas , Antígeno Prostático Específico/genética , Antígeno Prostático Específico/metabolismo , Transcrição Gênica
14.
Adv Cancer Res ; 115: 115-46, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23021244

RESUMO

A clear benefit of molecular imaging is to enable noninvasive, repetitive monitoring of intrinsic signals within tumor cells as a means to identify the lesions as malignant or to assess the ability of treatment to perturb key pathways within the tumor cells. Due to the promising utility of molecular imaging in oncology, preclinical research to refine molecular imaging techniques in small animals is a blossoming field. We will first discuss the several imaging modalities such as fluorescent imaging, bioluminescence imaging, and positron emission tomography that are now commonly used in small animal settings. The indirect imaging approach, which can be adapted to a wide range of imaging reporter genes, is a useful platform to develop molecular imaging. In particular, reporter gene-based imaging is well suited for transcriptional-targeted imaging that can be delivered by recombinant adenoviral vectors. In this review, we will summarize transcription-regulated strategies used in adenoviral-mediated molecular imaging to visualize metastasis and monitor oncolytic therapy in preclinical models.


Assuntos
Adenoviridae/genética , Neoplasias/genética , Neoplasias/terapia , Transcrição Gênica , Animais , Membrana Celular/metabolismo , Genes Reporter , Terapia Genética/métodos , Humanos , Luminescência , Imagem Molecular/métodos , Metástase Neoplásica , Terapia Viral Oncolítica/métodos , Tomografia por Emissão de Pósitrons/métodos , Tomografia Computadorizada de Emissão de Fóton Único/métodos , Ativação Transcricional
15.
Pain ; 153(4): 744-754, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22386471

RESUMO

Converging preclinical, and human epidemiological, neuroimaging, and genetic evidence suggests a central role for dopamine neurotransmission in modulating pain perception and analgesia. Dysregulation in dopamine signaling may modulate the experience of pain both directly, by enhancing or diminishing the propagation of nociceptive signals, and indirectly, by influencing affective and cognitive processes, which affect the expectation, experience, and interpretation of nociceptive signals. Hypersensitivity to pain and high rates of comorbid chronic pain are common in disorders linked with deficits in dopamine system function, including disorders of mood and affect, substance abuse, and Parkinson disease. Hyposensitivity to pain, however, is common in patients with schizophrenia, which has been linked with excessive dopamine neurotransmission. Although patients are typically affected most by the primary symptoms of their disorders, alterations in pain perception may further increase the burden of their illness, compromising their quality of life. The present review focuses on this relationship, and discusses clinical and potential therapeutic implications for both patients with dopamine-related disorders and those with chronic pain syndromes.


Assuntos
Sintomas Afetivos/fisiopatologia , Encéfalo/fisiopatologia , Transtornos Cognitivos/fisiopatologia , Dopamina/fisiologia , Transtornos Mentais/fisiopatologia , Dor/fisiopatologia , Sintomas Afetivos/epidemiologia , Sintomas Afetivos/metabolismo , Animais , Encéfalo/metabolismo , Transtornos Cognitivos/epidemiologia , Transtornos Cognitivos/metabolismo , Dopamina/efeitos adversos , Humanos , Transtornos Mentais/epidemiologia , Transtornos Mentais/metabolismo , Dor/epidemiologia , Dor/metabolismo , Transdução de Sinais/fisiologia
16.
Cancer Res ; 71(19): 6250-60, 2011 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-21933883

RESUMO

Prostate-specific promoters are frequently employed in gene-mediated molecular imaging and therapeutic vectors to diagnose and treat castration-resistant prostate cancer (CRPC) that emerges from hormone ablation therapy. Many of the conventional prostate-specific promoters rely on the androgen axis to drive gene expression. However, considering the cancer heterogeneity and varying androgen receptor status, we herein evaluated the utility of prostate-specific enhancing sequence (PSES), an androgen-independent promoter in CRPC. The PSES is a fused enhancer derived from the prostate-specific antigen (PSA) and prostate-specific membrane antigen gene regulatory region. We augmented the activity of PSES by the two-step transcriptional amplification (TSTA) system to drive the expression of imaging reporter genes for either bioluminescent or positron emission tomography (PET) imaging. The engineered PSES-TSTA system exhibits greatly elevated transcriptional activity, androgen independency, and strong prostate specificity, verified in cell culture and preclinical animal experimentations. These advantageous features of PSES-TSTA elicit superior gene expression capability for CRPC in comparison with the androgen-dependent PSA promoter-driven system. In preclinical settings, we showed robust PET imaging capacity of PSES-TSTA in a castrated prostate xenograft model. Moreover, intravenous administrated PSES-TSTA bioluminescent vector correctly identified tibial bone marrow metastases in 9 of 9 animals, whereas NaF- and FDG-PET was unable to detect the lesions. Taken together, this study showed the promising utility of a potent, androgen-independent, and prostate cancer-specific expression system in directing gene-based molecular imaging in CRPC, even in the context of androgen deprivation therapy.


Assuntos
Genes Reporter , Antígeno Prostático Específico/análise , Antígeno Prostático Específico/genética , Neoplasias da Próstata/diagnóstico , Androgênios/metabolismo , Animais , Medula Óssea/patologia , Elementos Facilitadores Genéticos , Regulação Neoplásica da Expressão Gênica , Fusão Gênica , Vetores Genéticos , Humanos , Masculino , Camundongos , Metástase Neoplásica , Orquiectomia , Tomografia por Emissão de Pósitrons , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Sequências Reguladoras de Ácido Nucleico/genética , Tíbia/patologia , Ativação Transcricional
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA