Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
2.
J Periodontal Res ; 58(6): 1212-1222, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37664910

RESUMO

BACKGROUND AND OBJECTIVES: Parkinson's disease (PD) and chronic periodontitis (CP) are both inflammatory diseases; a correlation between the two diseases has been reported, but the underlying mechanisms of this association have not been investigated. We investigated the common molecular mechanisms between PD and CP and the role of immune cells in the pathogenesis of them using bioinformatics analyses to elucidate the association between the two diseases. METHODS: We obtained gene expression data from the Gene Expression Omnibus (GEO) database: GSE10334, GSE16134, and GSE23586 for CP gingival samples and GSE20146 for PD brain samples. Subsequently, we conducted an enrichment analysis of the differentially expressed genes (DEGs) using the Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) analyses. Moreover, all DEGs were analysed for protein-transcription factor interactions and protein-immune cell co-expression. We constructed protein-transcription factor, protein-protein interaction (PPI), and protein-immune cell co-expression networks using the Cytoscape software. Moreover, we identified the hub genes and investigated them for potential diagnostic value. RESULTS AND CONCLUSION: We identified 99 DEGs in the three CP datasets, 520 DEGs in the PD dataset and found five common DEGs in the CP and PD datasets, namely CXCR4, CXCL8, CD19, RPTN, and SLC16A9. These common DEGs identified in our study may have a potential impact on disease pathogenesis through the involvement of CXCR4-CXCL8-CD19 protein-complexes in dendritic cells. Therefore, CD19, LCP2, CXCR4, and LYN could be used as target molecules for the clinical diagnosis of both diseases.


Assuntos
Periodontite Crônica , Doença de Parkinson , Humanos , Periodontite Crônica/diagnóstico , Periodontite Crônica/genética , Redes Reguladoras de Genes/genética , Perfilação da Expressão Gênica/métodos , Doença de Parkinson/diagnóstico , Doença de Parkinson/genética , Patologia Molecular , Biomarcadores , Fatores de Transcrição/genética , Biologia Computacional/métodos
3.
Acta Biomater ; 159: 140-155, 2023 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-36736849

RESUMO

After spinal cord injury (SCI), blood-spinal cord barrier (BSCB) disruption and hemorrhage lead to blood cell infiltration and progressive secondary injuries. Therefore, early restoration of the BSCB represents a key step in the treatment of SCI. Bazedoxifene (BZA), a third-generation estrogen receptor modulator, has recently been reported to inhibit inflammation and alleviate blood-brain barrier disruption caused by traumatic brain injury, attracting great interest in the field of central nervous system injury and repair. However, whether BZA can attenuate BSCB disruption and contribute to SCI repair remains unknown. Here, we developed a new type of biomaterial carrier and constructed a BZA-loaded HSPT (hyaluronic acid (HA), sodium alginate (SA), polyvinyl alcohol (PVA), tetramethylpropane (TPA) material construction) (HSPT@Be) system to effectively deliver BZA to the site of SCI. We found that HSPT@Be could significantly reduce inflammation in the spinal cord in SCI rats and attenuate BSCB disruption by providing covering scaffold, inhibiting oxidative stress, and upregulating tight junction proteins, which was mediated by regulation of the NF-κB/MMP signaling pathway. Importantly, functional assessment showed the evident improvement of behavioral functions in the HSPT@Be-treated SCI rats. These results indicated that HSPT@Be can attenuate BSCB disruption via the NF-κB pathway after SCI, shedding light on its potential therapeutic benefit for SCI. STATEMENT OF SIGNIFICANCE: After spinal cord injury, blood-spinal cord barrier disruption and hemorrhage lead to blood cell infiltration and progressive secondary injuries. Bazedoxifene has recently been reported to inhibit inflammation and alleviate blood-brain barrier disruption caused by traumatic brain injury. However, whether BZA can attenuate BSCB disruption and contribute to SCI repair remains unknown. In this study, we developed a new type of biomaterial carrier and constructed a bazedoxifene-loaded HSPT (HSPT@Be) system to efficiently treat SCI. HSPT@Be could provide protective coverage, inhibit oxidative stress, and upregulate tight junction proteins through NF-κB/MMP pathway both in vivo and in vitro, therefore attenuating BSCB disruption. Our study fills the application gap of biomaterials in BSCB restoration.


Assuntos
Lesões Encefálicas Traumáticas , Traumatismos da Medula Espinal , Ratos , Animais , NF-kappa B/metabolismo , Hidrogéis/farmacologia , Ratos Sprague-Dawley , Medula Espinal/metabolismo , Barreira Hematoencefálica/metabolismo , Hemorragia , Inflamação/metabolismo , Proteínas de Junções Íntimas/metabolismo , Lesões Encefálicas Traumáticas/metabolismo
4.
Mol Neurobiol ; 58(12): 6490-6504, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34554399

RESUMO

After spinal cord injury (SCI), destruction of the blood-spinal cord barrier (BSCB) results in infiltration of blood cells, such as neutrophils and macrophages, leading to permanent neurological dysfunction. Previous studies have shown that human bone marrow mesenchymal stem cell (BMSC)-derived exosomes have a beneficial neuroprotective effect in SCI models. However, whether BMSC-Exos contribute to the integrity of the BSCB has not been clarified. The purpose of this study was to investigate the mechanism of BMSC-Exo-induced changes in the permeability of the BSCB after SCI. Here, we first used BMSC-Exos to treat an SCI rat model, showing that BMSC-Exos can inhibit BSCB permeability damage and improve spontaneous repair. Next, we found that tissue inhibitors of matrix metalloproteinase 2 (TIMP2) have been shown to play an important role in the function of BMSC-Exos by inhibiting the matrix metalloproteinase (MMP) pathway, thereby reducing the reduction of cell junction proteins. Therefore, we constructed siTIMP2 to knock out TIMP2 in BMSC-Exos, which caused the activity of BMSC-Exos to be significantly weakened. Finally, we constructed an in vitro model of BSCB with HBMECs and verified that TIMP2 in BMSC-Exos in vitro can also alleviate BSCB damage. This proof-of-principle study demonstrates that BMSC-Exos can preserve the integrity of the BSCB and improve functional recovery after SCI through the TIMP2/MMP signaling pathway.


Assuntos
Barreira Hematoencefálica/metabolismo , Exossomos/metabolismo , Metaloproteinases da Matriz/metabolismo , Transplante de Células-Tronco Mesenquimais/métodos , Células-Tronco Mesenquimais/metabolismo , Traumatismos da Medula Espinal/terapia , Inibidor Tecidual de Metaloproteinase-2/metabolismo , Animais , Barreira Hematoencefálica/patologia , Modelos Animais de Doenças , Exossomos/patologia , Feminino , Ratos , Ratos Sprague-Dawley , Traumatismos da Medula Espinal/metabolismo , Traumatismos da Medula Espinal/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA