Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
Opt Lett ; 49(5): 1141-1144, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38426958

RESUMO

Upconversion nanocomposites with multiple light-emitting centers have attracted great attention as functional materials, but their low efficiency limits their further applications. Herein, a novel, to the best of our knowledge, system for nanocomposites consisting of upconversion nanoparticles (UCNPs) and perovskite quantum dots (PeQDs) assembled with Ag nanoparticles (NPs) is proposed. Upconversion luminescence (UCL) operation from PeQDs is triggered by near-infrared (NIR) sensitization through Förster resonance energy transfer (FRET) and photon reabsorption (PR). Especially, the photoluminescence (PL) emission efficiency is found to be significantly enhanced due to the increased energy transfer efficiency and radiative decay rate in the UCNPs/CsPbBr3 nanocomposites. The results offer new opportunities to improve the UCL properties of perovskites and open new development in the fields of LED lighting, solar cells, biomedicine, and so on.

2.
Ying Yong Sheng Tai Xue Bao ; 34(3): 751-760, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37087659

RESUMO

Ecological compensation plays an important role in maintaining ecosystem services and promoting regional green development. We built a regional horizontal ecological compensation model based on water resources pattern and insurance gain, and which was used to solve the problems of single compensation method and low compensation efficiency. Taking the Beijing-Tianjin-Hebei region as an example, we analyzed water footprint and water ecological carrying capacity from 2000 to 2019. The compensation subject and object and water footprint compensation amount were determined according to the input cost of ecological protection and allocation factor. Then, the insurance pricing model was introduced to determine ecological insurance premium rate. We calculated insurance compensation, ecological compensation standard and different types of ecosystem service value. Results showed that the whole region was at a state of water ecological deficit, with the agricultural water footprint accounting for 94.5%. From the perspective of the compensation subject and object, Beijing and Tianjin, as the compensation subject, needed to pay 0.402 billion yuan and 0.396 billion yuan (the amount of compensation) to Hebei Province each year. Hebei Province obtained a total of 0.228 billion yuan of ecological insurance with an insurance premium rate of 1.4%, and should receive an average annual ecological compensation standard of 0.81 billion yuan from Beijing and Tianjin. Hydrological regulation was the core ecosystem service in the region, with an average value of 187.974 billion yuan. It was of strategic significance to introduce ecological insurance mechanism to construct horizontal ecological compensation mechanism, improve ecosystem service function, and enhance the value of ecosystem services in the study area.


Assuntos
Ecossistema , Recursos Hídricos , Conservação dos Recursos Naturais , Pequim , Água , China
3.
Phys Chem Chem Phys ; 25(14): 9987-9998, 2023 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-36960706

RESUMO

We report yellow-orange emitting phosphors Sr9-xCaxMg1.5(PO4)7:0.05Eu2+ (SCxMPO:Eu2+, x = 0.5-2.5) and Sr9-yBayMg1.5(PO4)7:0.05Eu2+ (SByMPO:Eu2+, y = 0.5-3.0) with broad emission bands (450-800 nm). All these phosphors can be excited efficiently by blue light and n-UV light. Their crystal structure, photoluminescence spectra, fluorescence decay curves and thermal stability were investigated in detail. As doping concentrations of Ca2+ or Ba2+ increase, Eu2+ emitting centers will selectively occupy different Sr2+ sites, thus leading to the regulation of optical spectra of SCxMPO:Eu2+ and SByMPO:Eu2+. Accordingly, the emission colors of SCxMPO:Eu2+ and SByMPO:Eu2+ samples can gradually turn from yellow to orange when excited using 460 nm blue light. And the emission colors of a given sample can also be varied under different excitations because there are three kinds of emitting centers in SCxMPO:Eu2+ and SByMPO:Eu2+. In addition, introducing Ca2+ and Ba2+ can enhance the thermal stability of the phosphors obviously, and overall, the thermal stability of SByMPO:Eu2+ is better than that of SCxMPO:Eu2+. We chose SB2.5MPO:zEu2+ as an example to further investigate its photoluminescence properties, and found that the optimal doping concentration of Eu2+ is 0.08, and dipole-quadrupole interaction is dominated in the concentration quenching mechanism. Furthermore, high-quality warm white light can be obtained by two ways: (a) 470 nm blue LED chip + SC1.5MPO:Eu2+ [CCT = 3639 K, Ra = 82.21] and (b) 470 nm blue LED chip + SB2.5MPO:Eu2+ and YAG:Ce3+ [CCT = 4284 K, Ra = 86.69]. The excellent performances indicate that SCxMPO:Eu2+ and SByMPO:Eu2+ are attractive candidates for warm WLEDs.

4.
Nanoscale ; 15(13): 6234-6242, 2023 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-36892211

RESUMO

Spacer organic cations in two-dimensional (2D) perovskites play vital roles in inducing structural distortion of the inorganic components and dominating unique excitonic properties. However, there is still little understanding of spacer organic cations with identical chemical formulas, and different configurations have an impact on the excitonic dynamics. Herein, we investigate and compare the evolution of the structural and photoluminescence (PL) properties of [CH3(CH2)4NH3]2PbI4 ((PA)2PbI4) and [(CH3)2CH(CH2)2NH3]2PbI4 ((PNA)2PbI4) with isomeric organic molecules for spacer cations by combining steady-state absorption, PL, Raman and time-resolved PL spectra under high pressures. Intriguingly, the band gap is continuously tuned under pressure and decreased to 1.6 eV at 12.5 GPa for (PA)2PbI4 2D perovskites. Simultaneously, multiple phase transitions occur and the carrier lifetimes are prolonged. In contrast, the PL intensity of (PNA)2PbI4 2D perovskites exhibits an almost 15-fold enhancement at 1.3 GPa and an ultrabroad spectral range of up to 300 nm in the visible region at 7.48 GPa. These results indicate that the isomeric organic cations (PA+ and PNA+) with different configurations significantly mediate distinct excitonic behaviors due to different resilience to high pressures and reveal a novel interaction mechanism between organic spacer cations and inorganic layers under compression. Our findings not only shed light on the vital roles of isomeric organic molecules as organic spacer cations in 2D perovskites under pressure, but also open a route to rationally design highly efficient 2D perovskites incorporating such spacer organic molecules in optoelectronic devices.

5.
Spectrochim Acta A Mol Biomol Spectrosc ; 292: 122402, 2023 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-36724683

RESUMO

Novel phosphor exploration and luminescence property regulation are two important strategies in pursing high performance phosphors for white light emitting diodes, and have attracted great attention from the researchers. Herein, novel green phosphors Sr2Ga2SiO7:Eu2+ and Sr2Ga2SiO7:Ce3+,Tb3+ had been obtained by high-temperature solid-state reactions and their luminescence properties had been investigated in detail. Powder X-ray diffraction and Rietveld structure refinement results verified the phase purity and gave the crystal structure of the prepared samples. Due to the electric dipole transition between inter configurations of 4fN and 4fN-15d1, Sr2Ga2SiO7:Eu2+ and Sr2Ga2SiO7:Ce3+ exhibited intense broad excitation and emission bands, giving out green and blue emitting light under UV excitation, respectively. By codoping Tb3+ with Ce3+ in the host and utilizing the energy transfer, tunable blue to green emission had been obtained. The energy transfer mechanism had been determined to be electric dipole-quadrupole interaction through dynamic luminescence analysis using I-H model. The prepared phosphors exhibited good thermal stability with integral emission intensity at 150 °C remaining more than 80 % of the emission intensity at 25 °C. Moreover, by coating Sr2Ga2SiO7:Eu2+ and Sr2Ga2SiO7:Ce3+,Tb3+ on UV chips, green LED devices had been obtained. The investigation results indicated that the Eu2+ singly doped and Ce3+-Tb3+ codoped Sr2Ga2SiO7 might be potential UV excited green phosphors for solid state lighting.

6.
Opt Express ; 31(2): 2956-2966, 2023 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-36785297

RESUMO

Advanced hybrid materials have attracted extensive attention in optoelectronics and photonics application due to their unique and excellent properties. Here, the multicolor upconversion luminescence properties of the hybrid materials composed of CsPbX3(X = Br/I) perovskite quantum dots and upconversion nanoparticles (UCNPs, core-shell NaYF4:25%Yb3+,0.5%Tm3+@NaYF4) is reported, achieving the upconversion luminescence with stable and bright of CsPbX3 perovskite quantum dots under 980 nm excitation. Compared with the nonlinear upconversion of multi-photon absorption in perovskite, UCNPs/CsPbX3 achieves lower power density excitation by using the UCNPs as the physical energy transfer level, meeting the demand for multi-color upconversion luminescence in optical applications. Also, the UCNPs/CsPbX3 combined with ultraviolet curable resin (UVCR) shows excellent water and air stability, which can be employed as multicolor fluorescent ink for screen printing security labels. Through the conversion strategy, the message of the security labels can be encrypted and decrypted by using UV light and a 980 nm continuous wave excitation laser as a switch, which greatly improves the difficulty of forgery. These findings provide a general method to stimulate photon upconversion and improve the stability of perovskite nanocrystals, which will be better applied in the field of anti-counterfeiting.

7.
Phys Chem Chem Phys ; 23(45): 25886-25895, 2021 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-34766610

RESUMO

In pursuit of warm WLEDs, exploration of novel phosphors and regulation of the existing phosphors are the two approaches usually used in the luminescent material field. In this work, we prepared green Ca2Ta2O7:Bi3+ phosphors firstly and investigated their properties in detail. The as-prepared Ca2Ta2O7:Bi3+ exhibits intense green emission in the 450-580 nm range under UV excitation, which matches well with the UV chip and can efficiently avoid the re-absorption problem. The improvement in the emission intensity and thermal stability of the phosphor was achieved using different charge compensation methods including codoping alkali metal ions (Li+, Na+, and K+), creating a cation vacancy, and host co-substitution (Ca2+ + Ta5+ → Bi3+ + Si4+, Ca2+ + Ta5+ → Bi3+ + Ge4+). Through systematic research, the emission intensity at room temperature was improved 2.1 times and the thermal stability was improved 2.9 times at 200 °C. By coating the prepared green sample with other commercial phosphors on the UV chip, warm WLEDs with Ra being 91.1 and CCT being 3990 K were obtained. Moreover, taking the Bi3+ → Eu3+ energy transfer strategy, the emitting color of the phosphor was tuned and yellow emitting phosphor was obtained. Our study indicates that Bi3+ doped Ca2Ta2O7 might be a potential UV excited green phosphor for WLEDs. The charge compensation methods and the Bi3+ → Eu3+ energy transfer approach are valuable ways to improve and adjust the luminescence properties, which can further derivate a series of novel phosphors for improving the quality of WLED devices.

8.
Opt Express ; 29(24): 40051-40060, 2021 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-34809355

RESUMO

All-inorganic perovskite nanomaterials have attracted much attention recently due to their prominent optical performance and potential application for optoelectronic devices. The carriers dynamics of all-inorganic perovskites has been the research focus because the understanding of carriers dynamics process is of critical importance for improving the fluorescence conversion efficiency. While photophysical properties of excited carrier are usually measured at the macroscopic scale, it is necessary to probe the in-situ dynamics process at the nanometer scale and gain deep insights into the photophysical mechanisms and their localized dependence on the thin-film nanostructures. Stimulated emission depletion (STED) nanoscopy with super-resolution beyond the diffraction limit can directly provide explicit information at a single particle level or nanometer scale. Through this unique technique, we firstly study the in-situ dynamics process of single CsPbBr3 nanocrystals(NCs) and nanostructures embedded inside high-dense samples. Our findings reveal the different physical mechanisms of PL blinking and antibunching for single CsPbBr3 NCs and nanostructures that correlate with thin-film nanostructural features (e.g. defects, grain boundaries and carrier mobility). The insights gained into such nanostructure-localized physical mechanisms are critically important for further improving the material quality and its corresponding device performance.

9.
RSC Adv ; 11(48): 30465-30471, 2021 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-35480288

RESUMO

CsPbBr3 nanocrystals (NCs) encapsulated by Cs4PbBr6 has attracted extensive attention due to good stability and high photoluminescence (PL) emission efficiency. However, the origin of photoluminescence (PL) emission from CsPbBr3/Cs4PbBr6 composite materials has been controversial. In this work, we prepare CsPbBr3/Cs4PbBr6 core/shell nanoparticles and firstly study the mechanism of its photoluminescence (PL) at the single-particle level. Based on photoluminescence (PL) intensity trajectories and photon antibunching measurements, we have found that photoluminescence (PL) intensity trajectories of individual CsPbBr3/Cs4PbBr6 core/shell NCs vary from the uniform longer periods to multiple-step intensity behaviors with increasing excitation level. Meanwhile, second-order photon correlation functions exhibit single photon emission behaviors especially at lower excitation levels. However, the PL intensity trajectories of individual Cs4PbBr6 NCs demonstrate apparent "burst-like" behaviors with very high values of g 2(0) at any excitation power. Therefore, the distinguishable emission statistics help us to elucidate whether the photoluminescence (PL) emission of CsPbBr3/Cs4PbBr6 core/shell NCs stems from band-edge exciton recombination of CsPbBr3 NCs or intrinsic Br vacancy states of Cs4PbBr6 NCs. These findings provide key information about the origin of emission in CsPbBr3/Cs4PbBr6 core/shell nanoparticles, which improves their utilization in the further optoelectronic applications.

10.
Dalton Trans ; 49(3): 667-674, 2020 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-31844868

RESUMO

In this paper, novel green-emitting Sr4Gd3Na3(PO4)6F2:Ce3+,Tb3+ phosphors with zero-thermal quenching of Tb3+ have been prepared and investigated. X-ray diffraction together with Rietveld structure refinement was employed to give an insight into the structures of the samples. The luminescence spectra at 300 K and 80 K confirmed that the Ce3+ ions in Sr4Gd3Na3(PO4)6F2:Ce3+ were distributed randomly on the cation sites and gave intense emission. Utilizing the Ce3+ → Tb3+ energy transfer, intense green emitting Sr4Gd3Na3(PO4)6F2:Ce3+,Tb3+ had been obtained. The energy migration mechanism of Ce3+ in Sr4Gd3Na3(PO4)6F2:Ce3+ and the energy transfer mechanism of Ce3+ → Tb3+ in Sr4Gd3Na3(PO4)6F2:Ce3+,Tb3+ were determined by the analysis of photoluminescence spectra and decay curves. Sr4Gd3Na3(PO4)6F2:Ce3+,Tb3+ exhibited a thermal-induced enhancement of Tb3+ emission at 25-300 °C, indicating an excellent thermal stability. Moreover, utilizing our prepared Sr4Gd3Na3(PO4)6F2:0.06Ce3+,0.15Tb3+ phosphor, green and white emitting LED devices have been fabricated. Our investigation indicated the potential application of prepared green phosphors in UV WLEDs and a feasible method to explore highly thermally stable phosphors utilizing the high thermal stability of donors together with energy transfer from donors to acceptors.

11.
Sci Data ; 6(1): 128, 2019 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-31332220

RESUMO

The London Planetree (Platanus acerifolia) are present throughout the world. The tree is considered a greening plant and is commonly planted in streets, parks, and courtyards. The Sycamore lace bug (Corythucha ciliata) is a serious pest of this tree. To determine the molecular mechanism behind the interaction between the London Planetree and the Sycamore lace bug, we generated a comprehensive RNA-seq dataset (630,835,762 clean reads) for P. acerifolia by sequencing both infected and non-infected leaves of C. ciliata using the Illumina Hiseq 4000 system. We assembled the transcriptomes using the Trinity De Novo assembly followed by annotation. In total, 121,136 unigenes were obtained, and 80,559 unigenes were successfully annotated. From the 121,136 unigenes, we identified 3,010,256 SNPs, 39,097 microsatellites locus, and 1,916 transcription factors. The transcriptomic dataset we present are the first reports of transcriptome information in Platanus species and will be incredibly useful in future studies with P. acerifolia and other Platanus species, especially in the areas of genomics, molecular biology, physiology, and population genetics.


Assuntos
Hemípteros , Magnoliopsida/genética , Fatores de Transcrição/genética , Transcriptoma , Animais , Genes de Plantas , Marcadores Genéticos , Herbivoria , Repetições de Microssatélites , Polimorfismo de Nucleotídeo Único , Árvores/genética
12.
Phys Chem Chem Phys ; 20(42): 26995-27002, 2018 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-30328434

RESUMO

A series of Ce3+/Tb3+ doped Li3Sc2(PO4)3 phosphors has been obtained using high temperature solid state reactions. Density functional theory (DFT) calculations using the CASTEP module have given an insight into the bandgap and electronic structures of the hosts. The phase formation and the crystal structure of the prepared samples were verified using X-ray diffraction and Rietveld structure refinement analysis. Samples singly doped with Ce3+ ions had an intense emission centered at 350 nm under UV light irradiation, while samples singly doped with Tb3+ ions exhibited a typical green emission under 230 nm irradiation. Efficient Ce3+→Tb3+ energy transfer can cause the Li3Sc2(PO4)3:Ce3+,Tb3+ samples to have an intense green emission at very low Tb3+ concentrations under 285 nm excitation, making Li3Sc2(PO4)3:Ce3+,Tb3+ an efficient UV-excited green phosphor. The mechanism and critical distance for Ce3+→Tb3+ energy transfer in the phosphor were determined by detailed luminescence decay curve analysis utilizing the I-H model. Moreover, a WLED device was fabricated using our prepared green phosphor.

13.
Nanoscale Res Lett ; 13(1): 80, 2018 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-29516295

RESUMO

The optical properties of alternating ultrathin Ti0.91O2 nanosheets and CdS nanoparticle hybrid spherical structures designed by the layer-by-layer (LBL) assembly technique are investigated. From the photoluminescence (PL) spectral measurements on the hybrid spherical structures, a spectrum-shifted fluorescence emission occurs in this novel hybrid material. The time-resolved PL measurements exhibit a remarkably increased PL lifetime of 3.75 ns compared with only Ti0.91O2 spheres or CdS nanoparticles. The novel results were attributed to the enhanced electron-hole separation due to the new type II indirect optical transition mechanism between Ti0.91O2 and CdS in a charge-separated configuration.

14.
Phys Chem Chem Phys ; 19(36): 24566-24573, 2017 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-28853459

RESUMO

Color tunable Sr3LaNa(PO4)3F:Eu2+,Tb3+ and Sr3LaNa(PO4)3F:Tb3+,Mn2+ phosphors were prepared by a high temperature solid state reaction. The crystal structure, luminescence properties, and energy transfer mechanism of the samples were investigated in detail. The Eu2+ doped phosphors can be efficiently excited in the range from 250 to 410 nm, which matches well with the commercial n-UV LED chips. Utilizing the energy transfer from Eu2+ to Tb3+ ions, tunable colors from blue to green were obtained under the irradiation of 405 nm. The mechanism of the Eu2+ → Tb3+ energy transfer was demonstrated to be a dipole-quadrupole interaction in terms of the experimental results and analysis of the photoluminescence spectra and decay curves of the phosphors. Moreover, the thermal stability and quantum efficiency of the Eu2+ and Tb3+ co-doped phosphors were studied. For the Sr3LaNa(PO4)3F:Tb3+,Mn2+ samples, tunable green-orange emissions were obtained by changing the relative ratio of Tb3+ and Mn2+ ions under 230 nm irradiation. The investigation results suggest that color tunable phosphors with potential for WLEDs were obtained utilizing the energy transfer process.

15.
Nanoscale Res Lett ; 12(1): 222, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28347128

RESUMO

Temperature and wavelength dependence of energy transfer (ET) process between quantized states and surface trap states of CdSe quantum dots was investigated, respectively. The experimental results demonstrate that the photoluminescence (PL) intensity of the quantized states decreases with respect to the trap state emission, especially at lower temperatures. The observed ET process between quantized states and trap states which is influenced by the thermal population behavior. At the same temperature, the silver films can greatly enhance the energy transfer (ET) rate from the quantized states to trap states due to surface plasmonic coupling effect.

16.
Technol Cancer Res Treat ; 16(5): 586-594, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-27507654

RESUMO

Epigenetic modifications are involved in the pathogenesis of cancer, and histone deacetylase inhibitors are considered potential therapeutic agents. Histone tails undergo acetylation at lysine residues, which is associated with transcriptional activation. However, previous studies indicated that as histone deacetylase inhibitors, both (-)-epigallocatechin-3-gallate and valproic acid presented the effects of downregulation of amyloid precursor protein expression, which resulted in the induction of apoptosis. The downregulation of amyloid precursor protein, instead of conventionally activating gene expression as histone deacetylase inhibitor, was attractive. However, there was no relevant report on the correlation of the expression of amyloid precursor protein and histone deacetylase 1 in cancer. In the present study, we detected the expression of amyloid precursor protein and histone deacetylase 1 in hepatocellular carcinoma and adjacent tissues, as well as the correlations among histone deacetylase 1, amyloid precursor protein, and tumor stage. The results showed that the expressions of amyloid precursor protein and histone deacetylase 1 were significantly higher in hepatocellular carcinoma tissues than that in adjacent tissues ( P < .05), however, there was no statistical difference between amyloid precursor protein and histone deacetylase 1 with tumor stages. The present findings provided more foundation for the study on amyloid precursor protein metabolism in cancer, especially on the regulation of amyloid precursor protein by histone deacetylases.


Assuntos
Precursor de Proteína beta-Amiloide/genética , Carcinoma Hepatocelular/genética , Expressão Gênica , Histona Desacetilases/genética , Neoplasias Hepáticas/genética , Adulto , Idoso , Precursor de Proteína beta-Amiloide/metabolismo , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Histona Desacetilases/metabolismo , Humanos , Imuno-Histoquímica , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Pessoa de Meia-Idade , Adulto Jovem
17.
Inorg Chem ; 55(12): 6107-13, 2016 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-27249557

RESUMO

A series of Ba4Gd3Na3(PO4)6F2:Eu(2+) phosphors with a broad emitting band have been synthesized by a traditional solid state reaction. The crystal structural and photoluminescence properties of Ba4Gd3Na3(PO4)6F2:Eu(2+) are investigated. The different crystallographic sites of Eu(2+) in Ba4Gd3Na3(PO4)6F2:Eu(2+) phosphors have been verified by means of their photoluminescence (PL) properties and decay times. Energy transfer between Eu(2+) ions, analyzed by excitation, emission, and PL decay behavior, has been indicated to be a dipole-dipole mechanism. Moreover, the luminescence quantum yield as well as the thermal stability of the Ba4Gd3Na3(PO4)6F2:Eu(2+) phosphor have been investigated systematically. The as-prepared Ba4Gd3Na3(PO4)6F2:Eu(2+) phosphor can act as a promising candidate for n-UV convertible white LEDs.

18.
Drug Des Devel Ther ; 10: 1461-9, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27143853

RESUMO

AIM: ß-asarone, an active component of Acori graminei rhizome, has been reported to have neuroprotective effects in Alzheimer's disease. As the underlying mechanism is not known, we investigated the neuroprotective effects of ß-asarone in an APP/PS1 double transgenic mouse model and in NG108 cells. MATERIALS AND METHODS: APPswe/PS1dE9 double transgenic male mice were randomly assigned to a model group, ß-asarone treatment groups (21.2, 42.4, or 84.8 mg/kg/d), or donepezil treatment group (2 mg/kg/d). Donepezil treatment was a positive control, and background- and age-matched wild-type B6 mice were an external control group. ß-asarone (95.6% purity) was dissolved in 0.8% Tween 80 and administered by gavage once daily for 2.5 months. Control and model animals received an equal volume of vehicle. After 2.5 months of treatment, behavior of all animals was evaluated in a Morris water maze. Expression of synaptophysin (SYP) and glutamatergic receptor 1 (G1uR1) in the hippocampus and cortex of the double transgenic mice was assayed by Western blotting. The antagonistic effects of ß-asarone against amyloid-ß peptide (Aß) were investigated in vitro in the NG108-15 cell line. After 24 hours of incubation, cells were treated with 10 µm Aß with or without ß-asarone at different concentrations (6.25, 12.5, or 25 µM) for an additional 36 hours. The cytotoxicity of ß-asarone was evaluated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay of cell viability, and cell morphology was evaluated by bright-field microscopy after 24 hours of treatment. The expression of SYP and GluR1 in cells was detected by Western blot assay in the hippocampus and brain cortex tissues of mice. RESULTS: ß-asarone at a high dose reduced escape latency and upregulated SYP and GluR1 expression at both medium and high doses. Cell morphology evaluation showed that ß-asarone treatment did not result in obvious cell surface spots and cytoplasmic granularity. ß-asarone had a dose-dependent effect on cell proliferation. CONCLUSION: ß-asarone antagonized the Aß neurotoxicity in vivo, improved the learning and memory ability of APP/PS1 mice, and increased the expression of SYP and GluR1 both in vivo and in vitro. Thus, ß-asarone may be a potential drug for the treatment of Alzheimer's disease.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Anisóis/farmacologia , Plasticidade Neuronal/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Receptores de AMPA/biossíntese , Sinaptofisina/biossíntese , Derivados de Alilbenzenos , Doença de Alzheimer/prevenção & controle , Animais , Anisóis/química , Células Cultivadas , Relação Dose-Resposta a Droga , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Camundongos , Camundongos Transgênicos , Estrutura Molecular , Fármacos Neuroprotetores/química , Relação Estrutura-Atividade
19.
Inorg Chem ; 55(4): 1912-9, 2016 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-26841071

RESUMO

A novel nonorganic wet route for direct synthesis of uniform hexagonal ß-NaYF4:Ln(3+) (Ln = Eu, Tb, Ce/Tb, Yb/Er, and Yb/Tm) microcrystals with various morphologies has been developed wherein the intermediate routine cubic-hexagonal (α → ß) phase transfer process was avoided. The morphology can be effectively tuned into hexagonal disc, prism, and novel hierarchical architectures by systematically fine manipulating the Na2CO3/F(-) feeding ratio. It has been found that the routine α → ß phase transfer for NaYF4 was not detected during the growth, while NaY(CO3)F2 emerged in the initial reaction stage and fast transformed into ß-NaYF4 via a novel topotactic transformation behavior. Detailed structural analysis showed that ß-NaYF4 preferred the [001] epitaxial growth direction of NaY(CO3)F2 due to the structural matching of [001]NaY(CO3)F2//[0001]ß-NaYF4. Besides, the potential application of the as-prepared products as phosphors is emphasized by demonstrating multicolor emissions including downconversion, upconversion, and energy transfer (Ce-Tb) process by lanthanides doping.

20.
Dalton Trans ; 45(2): 466-8, 2016 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-26608908

RESUMO

To date, most current reports on the development and optimization of solar spectral converters have described the utilization of energy transfer among rare-earth ions. Here, we introduce non-rare-earth ion Mn(4+) to transfer energy to Yb(3+), which can exhibit strong near-infrared luminescence. It can harvest UV-blue photons and exhibits intense NIR emission of Yb(3+) around 1000 nm, perfectly matching the maximum spectral response of Si solar cells. It demonstrates for the first time that efficient energy transfer occurs with a decrease in the excited state lifetime and red photoluminescence (PL) from Mn(4+) with increasing Yb(3+) concentration. These results demonstrate that the Mn(4+) ions can be an efficient and direct sensitizer harvesting UV-blue photons. It could provide new avenues for developing harvesting Si-based solar cells.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA