Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
ACS Omega ; 8(23): 20450-20470, 2023 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-37332782

RESUMO

Process economy and dynamic controllability are critical for DMC/MeOH separation via the PSD process. In this paper, rigorous steady-state and dynamic simulations of atmospheric-pressurized process for DMC/MeOH separation with no, partial, and full heat integration have been carried out with Aspen Plus and Aspen Dynamics. Further investigations have been conducted into the economic design and dynamic controllability of the three neat systems. Simulation results indicated that: the separation process via full and partial heat integration provided TAC savings of 39.2 and 36.2%, respectively, compared to that of no heat integration; the non-heat-integrated system displays good dynamic performance, critical dynamic penalties were demonstrated for both partial and full heat integration processes, while the partial one exhibited a more robust control except for precisely maintaining XB2(DMC); a PCTC scheme with a CC/TC cascade control was proposed to precisely maintain the product concentration for the fully heat-integrated PSD process. A comparison of the economy between atmospheric-pressurized and pressurized-atmospheric sequences indicated that the former is more energy efficient. Further, a comparison of the economy between atmospheric-pressurized and pressurized-atmospheric sequences indicated that the former is more energy efficient. This study will provide new insights into the energy efficiency and has some implications for design and control of DMC/MeOH separation in the industrialization process.

2.
J Colloid Interface Sci ; 645: 895-905, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37178566

RESUMO

Developing the robust non-precious metal bifunctional electrocatalyst is highly imperative for the hydrogen evolution from overall water splitting. Herein, a Ni foam (NF)-supported ternary Ni/Mo bimetallic complex (Ni/Mo-TEC@NF), hierarchically constructed by coupling the in-situ formed MoNi4 alloys and Ni2Mo3O8 with Ni3Mo3C on NF, has been developed through a facile method involving the in-situ hydrothermal growth of the Ni-Mo oxides/polydopamine (NiMoOx/PDA) complex on NF and a subsequent annealing in a reduction atmosphere. Synchronously, N and P atoms are co-doped into Ni/Mo-TEC during the annealing procedure using phosphomolybdic acid and PDA raw materials as P and N sources, respectively. The resultant N, P-Ni/Mo-TEC@NF shows outstanding electrocatalytic activities and tremendous stability for hydrogen evolution reaction (HER) and oxygen evolution reaction (OER), due to the multiple heterojunction effect-promoted electron transfer, the large number of exposed active sites, and the modulated electronic structure by the N and P co-doping. It only needs a low overpotential of 22 mV to afford the current density of 10 mA·cm-2 for HER in alkaline electrolyte. More importantly, as the anode and cathode, it requires only 1.59 and 1.65 V to achieve 50 and 100 mA·cm-2 for overall water splitting, respectively, comparable to the benchmark Pt/C@NF//RuO2@NF couple. This work could spur the search for economical and efficient electrodes by in situ constructing multiple bimetallic components on 3D conductive substrates for practical hydrogen generation.

3.
Environ Technol ; : 1-10, 2022 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-36036221

RESUMO

⋅OHThe wet denitrification technology has a good development prospect due to its simple system and mild reaction conditions, and related research has become a hot topic in the field of flue gas purification. In this work, a novel simultaneous removal technology of NO from flue gas using Fe2+/Cu2+-catalytic H2O2/(NH4)2S2O8 system was developed for the first time. The feasibility of this new flue gas cleaning technology was explored through a series of experiments and performance analyses. The mechanism of oxidation products, free radicals and simultaneous removal of NO was revealed. The effects of the main process parameters on the removal of NO were investigated. Relevant results demonstrated that the removal efficiency of NO was elevated when the concentration of (NH4)2S2O8 or reacting temperature increased, while it was decreased after increasing the raising of Fe2+, Cu2+ and H2O2 concentrations. The main radicals were and·SO4-, using the electron spin resonance technique in the solution, and played a very important role in NO removal. The main products were carried out by ion chromatography and elemental N material accountancy, and the results showed that it was sulfate and nitrate in the solution, which provided theoretical guidance for the subsequent treatment and resource utilization of the absorption solution. The results of the study provided a theoretical basis for the industrial application of wet denitrification.

4.
Dalton Trans ; 51(17): 6899-6907, 2022 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-35441633

RESUMO

Titanium dioxide (TiO2) has attracted enormous interest in abundant photocatalytic reactions, but its photocatalytic efficiency is limited by its wide bandgap and the rapid recombination of electron-hole pairs. To overcome the disadvantages of its rapid electron-hole recombination rate, herein, oxidative TiO2 was one-step fabricated using potassium permanganate (KMnO4), exhibiting improved charge separation efficiency and photocatalytic degradation performance towards methyl orange (MO). Remarkably, the first-order photodegradation rate of oxidative TiO2 is 3.68 times higher than that of pristine TiO2 under the irradiation of simulated sunlight and 2.15 times higher under ultraviolet light. This exceptional photocatalytic activity is attributed to the additional oxygen doped into the interstices of the TiO2 lattice, creating impurity states in the bandgap acting as trapping sites, thus facilitating charge separation. This work provides a promising strategy for the insertion of O atoms into the TiO2 lattice and expands the photocatalytic application of the related materials.

5.
Environ Sci Pollut Res Int ; 29(23): 34830-34840, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35040063

RESUMO

In this study, the high-gravity technique is used to intensify the heterogeneous catalytic ozonation with activated carbon (AC) as the catalyst for removal of phenol from wastewater in a rotating packed bed (RPB), and the effects of high-gravity factor, inlet O3 concentration, liquid-gas ratio, and initial pH on the degradation and mineralization of phenol at room temperature are investigated. It is revealed that the degradation rate of phenol reaches 100% at 10 min and the removal rate of total organic carbon (TOC) reaches 91% at 40 min under the conditions of high-gravity factor ß = 40, inlet O3 concentration = 90 mg·L-1, liquid flow rate = 80 L·h-1, and initial pH = 11. Compared with the bubbling reactor (BR)/O3/AC and RPB/O3 systems, the mineralization rate of phenol by the RPB/O3/AC system is increased by 24.78% and 34.77%, respectively. Free radical quenching experiments are performed using tertiary butanol (TBA) and benzoquinone (BQ) as scavengers of ·OH and O2-, respectively. It is shown that the degradation and mineralization of phenol are attributed to the direct ozonation and the indirect oxidation by ·OH generated from the decomposition of O3 adsorbed on AC surface, respectively. ·OH and O2·- are also detected by electron paramagnetic resonance (EPR). Thus, it is concluded that AC-catalyzed ozonation and high-gravity technique have a synergistic effect on ·OH initiation, which in turn can significantly improve the degradation and mineralization of organic wastewater.


Assuntos
Ozônio , Poluentes Químicos da Água , Purificação da Água , Catálise , Carvão Vegetal , Ozônio/química , Fenol/química , Águas Residuárias/análise , Poluentes Químicos da Água/análise , Purificação da Água/métodos
6.
Dalton Trans ; 50(13): 4567-4576, 2021 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-33729233

RESUMO

A hexagonal prismatic Cu6S6 cluster exhibits excellent near-infrared fluorescence properties due to its short Cu-Cu bonds, however, the construction of Cu6S6 cluster-based compounds with extended structures is still a challenge. Here, four new Cu6S6 cluster-based coordination compounds, formulated as Cu3(pymt)3 (1), {(CuCN)2[Cu3(mpymt)3]}n (2), {(CuSCN)[Cu3(mpymt)3]}n (3) and {(CuCN)2[Cu3(dmpymt)3]·CH3CN}n (4) (Hpymt = pyrimidine-2-thiolate, Hmpymt = 4-methyl-pyrimidine-2-thione and Hdmpymt = 4,6-dimethylpyrimidine-2-thione), have been synthesized through the reactions of mercaptopyrimidine derivatives and CuCN or CuSCN under solvo-thermal conditions and characterized by single-crystal X-ray diffraction, powder X-ray diffraction, IR spectroscopy, elemental analysis, and thermal gravimetric analysis. Single-crystal X-ray diffraction analysis reveals that compound 1 is a zero-dimensional Cu6(pymt)6 molecule containing a distorted pseudo-hexagonal prismatic Cu6S6 core. Compounds 2 and 4 with isomorphic frameworks but different organic linkers show a rare three-dimensional framework with nor topology constructed from Cu6(mpymt)6 units and one-dimensional chiral [Cu(CN)]n chains; compared with compound 2, a more hydrophobic one-dimensional channel in compound 4 is observed due to the increase of the methyl groups on the pyrimidine ligand, in which acetonitrile molecules are filled in the channels of compound 4. Compound 3 shows a rare two-dimensional layer constructed from Cu6(mpymt)6 units and one-dimensional puckered (CuSCN)n chains. For the first time, Cu6S6 clusters are connected to one-dimensional inorganic CuCN (or CuSCN) chains through mercaptopyrimidine derivatives to obtain extended arrays in compounds 2-4. The crystals of compounds 1-4 in the solid state all show apparent red light emission. Compound 4 shows sensitive luminescence quenching response to nitrobenzene (NB), and the corresponding quenching constant (Ksv) and detection limit are 2.06 × 103 M-1 and 9.27 ppm, respectively. This study provides a new strategy to construct Cu6S6 cluster-based coordination polymers that have great potential in various applications such as luminescence sensing.

7.
Environ Sci Pollut Res Int ; 27(7): 7015-7024, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31900773

RESUMO

In this study, porous activated carbon balls supported by nanoscale zero-valent iron composites (Fe@PACB-700) were used for the first time for the removal of trace Cr(VI) from aqueous solutions. The Fe@PACB-700 composites were prepared by a facile carbothermal reduction method and then characterized by scanning electron microscopy (SEM), energy-dispersive spectroscopy (EDS), X-ray diffraction analysis (XRD), and X-ray photoelectron spectroscopy (XPS). The results show that nZVI particles have been successfully loaded onto PACBs. Fe@PACB-700 shows an excellent Cr(VI) removal efficiency of 91.2%. The maximum adsorption capacity of Fe@PACB-700 for Cr(VI) is 22.24 mg/g, which is 4.36 times that of PACB. The residual Cr(VI) concentration is below 20 ppb with the use of 0.15 g of Fe@PACB-700, which is much lower than the allowable concentration for Cr(VI) in drinking water (0.05 mg/L). The adsorption of Cr(VI) can be well described by the Langmuir isotherm model and pseudo-second-order kinetic model. Fe@PACB-700 still has a high removal efficiency of 80% after five cycles. Thus, Fe@PACB-700 has a great potential for Cr(VI) removal from aqueous solution. Graphical abstract.


Assuntos
Carvão Vegetal , Cromo/química , Poluentes Químicos da Água , Adsorção , Cromo/análise , Ferro/química , Porosidade
8.
Dalton Trans ; 48(35): 13248-13259, 2019 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-31414090

RESUMO

Cobalt has been extensively studied as an effective catalyst for the electrooxidation of sodium borohydride. However, there is still the problem of the low catalytic activity of cobalt catalysts. The improvement in the catalytic activity of cobalt for the electrooxidation of sodium borohydride has become a challenge. In this paper, a novel catalyst Co-P alloy was supported on a copper foam (CF) substrate by a one-step electrodeposition method. In the electrodeposition process, a Co-P/CF electrode with a three-dimensional (3D) porous structure was successfully prepared using hydrogen bubbles as a dynamic template. Through the physical characterization of Co-P/CF, it was proven that the doping of P element produced more Co clusters on the surface of the electrode, which resulted in more active sites. These characteristics were very beneficial for NaBH4 electrooxidation. The electrochemical characterization confirmed that the electrocatalytic activity of Co-P/CF for NaBH4 was better than that of Co/CF. At room temperature, for the Co-P/CF in 2.0 mol dm-3 NaOH + 0.20 mol dm-3 NaBH4 solution, the oxidation current density reached 1795 mA cm-2 at -0.20 V (vs. Ag/AgCl), which was higher than that previously reported the literature.

9.
Carbohydr Polym ; 201: 357-366, 2018 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-30241829

RESUMO

Magnetic fluorescent nanoparticles (MFNPs)-based protein immobilization systems were successfully synthesized via a layer-by-layer (LbL) assembly approach in an impinging stream-rotating packed bed, which adopted chitosan containing carbon dots (CDs)@Fe3O4 nanoparticles (NPs) as a precursor, chitosan (CS) or carboxymethylcellulose (CMC) involving CDs as shells. To reveal the relationship between structure and efficiency of systems, the effect of self-assembly mode and layer number\was investigated to provide us insight into how to improve the design of MFNPs-based supports. Finally, an MFNPs-based protein immobilization system with excellent fluorescence and magnetic response, expanded specific surface area, and enhanced immobilization and release performance were obtained. Immobilization mechanism and kinetic studies were also conducted to reveal the rate-controlling step and the template affinity. Taken together, this study provides an effective strategy to synthesize bifunctional MFNPs and to adjust the performance, which aims for facilitating new possibilities for biomass-based nanomaterials used for protein immobilization.

10.
Environ Sci Pollut Res Int ; 25(25): 25060-25070, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29936612

RESUMO

The rotating packed bed (RPB) as a continuous flow reactor performs very well in degradation of nitrobenzene wastewater. In this study, acidic nitrobenzene wastewater was degraded using ozone (O3) combined with hydrogen peroxide and titanium ions (Ti(IV)/H2O2/O3) or using only H2O2/O3 in a RPB. The degradation efficiency of nitrobenzene by Ti(IV)/H2O2/O3 is roughly 16.84% higher than that by H2O2/O3, and it reaches as high as 94.64% in 30 min at a H2O2/O3 molar ratio of 0.48. It is also found that the degradation efficiency of nitrobenzene is significantly affected by the high gravity factor, H2O2/O3 molar ratio, and Ti(IV) concentration, and it reaches a maximum at a high gravity factor of 40, a Ti(IV) concentration of 0.50 mmol/L, a pH of 4.0, a H2O2/O3 molar ratio of 0.48, a liquid flow rate of 120 L/h, and an initial nitrobenzene concentration of 1.22 mmol/L. Both direct ozonation and indirect ozonation are involved in the reaction of O3 with organic pollutants. The indirect ozonation due to the addition of different amounts of tert-butanol (·OH scavenger) in the system accounts for 84.31% of the degradation efficiency of nitrobenzene, indicating that the nitrobenzene is dominantly oxidized by ·OH generated in the RPB-Ti(IV)/H2O2/O3 process. Furthermore, the possible oxidative degradation mechanisms are also proposed to better understand the role of RPB in the removal of pollutants. Graphical abstract ᅟ.


Assuntos
Modelos Químicos , Nitrobenzenos/química , Águas Residuárias/química , Poluentes Químicos da Água/química , Peróxido de Hidrogênio , Nitrobenzenos/análise , Oxirredução , Ozônio , Titânio , Águas Residuárias/análise , Poluentes Químicos da Água/análise , Purificação da Água
11.
Carbohydr Polym ; 174: 1192-1200, 2017 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-28821044

RESUMO

This study aimed to provide a continuous method for the preparation of magnetic Fe3O4/Chitosan nanoparticles (Fe3O4/CS NPs) that can be applied to efficient removal of heavy metal ions from aqueous solution. Using a novel impinging stream-rotating packed bed, the continuous preparation of Fe3O4/CS NPs reached a theoretical production rate of 3.43kg/h. The as-prepared Fe3O4/CS NPs were quasi-spherical with average diameter of about 18nm and saturation magnetization of 33.5emu/g. Owing to the strong metal chelating ability of chitosan, the Fe3O4/CS NPs exhibited better adsorption capacity and faster adsorption rates for Pb(II) and Cd(II) than those of pure Fe3O4. The maximum adsorption capacities of Fe3O4/CS NPs for Pb(II) and Cd(II) were 79.24 and 36.42mgg-1, respectively. In addition, the Fe3O4/CS NPs shown excellent reusability after five adsorption-desorption cycles. All the above results provided a potential method for continuously preparing recyclable adsorbent with a wide prospect of application in wastewater treatment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA