Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 211
Filtrar
1.
Heliyon ; 10(9): e30336, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38707272

RESUMO

Adults with spinal cord injury (SCI), a destructive neurological injury, have a significantly higher incidence of osteoarthritis (OA), a highly prevalent chronic joint disorder. This study aimed to dissect the neuroimmune-related regulatory mechanisms of SCI and OA using bioinformatics analysis. Using microarray data from the Gene Expression Omnibus database, differentially expressed genes (DEGs) were screened between SCI and sham samples and between OA and control samples. Common DEGs were used to construct a protein-protein interaction (PPI) network. Weighted gene co-expression network analysis (WGCNA) was used to mine SCI- and OA-related modules. Shared miRNAs were identified, and target genes were predicted using the Human MicroRNA Disease Database (HMDD) database. A miRNA-gene-pathway regulatory network was constructed with overlapping genes, miRNAs, and significantly enriched pathways. Finally, the expression of the identified genes and miRNAs was verified using RT-qPCR. In both the SCI and OA groups, 185 common DEGs were identified, and three hub clusters were obtained from the PPI network. WGCNA revealed three SCI-related modules and two OA-related modules. There were 43 overlapping genes between the PPI network clusters and the WGCNA network modules. Seventeen miRNAs shared between patients with SCI and OA were identified. A regulatory network consisting of five genes, six miRNAs, and six signaling pathways was constructed. Upregulation of CD44, TGFBR1, CCR5, and IGF1, while lower levels of miR-125b-5p, miR-130a-3p, miR-16-5p, miR-204-5p, and miR-204-3p in both SCI and OA were successfully verified using RT-qPCR. Our study suggests that a miRNA-gene-pathway network is implicated in the neuroimmune-related regulatory mechanisms of SCI and OA. CD44, TGFBR1, CCR5, and IGF1, and their related miRNAs (miR-125b-5p, miR-130a-3p, miR-16-5p, miR-204-5p, and miR-204-3p) may serve as promising biomarkers and candidate therapeutic targets for SCI and OA.

2.
Mil Med Res ; 11(1): 28, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38711073

RESUMO

BACKGROUND: Intervertebral disc degeneration (IVDD) is a multifaceted condition characterized by heterogeneity, wherein the balance between catabolism and anabolism in the extracellular matrix of nucleus pulposus (NP) cells plays a central role. Presently, the available treatments primarily focus on relieving symptoms associated with IVDD without offering an effective cure targeting its underlying pathophysiological processes. D-mannose (referred to as mannose) has demonstrated anti-catabolic properties in various diseases. Nevertheless, its therapeutic potential in IVDD has yet to be explored. METHODS: The study began with optimizing the mannose concentration for restoring NP cells. Transcriptomic analyses were employed to identify the mediators influenced by mannose, with the thioredoxin-interacting protein (Txnip) gene showing the most significant differences. Subsequently, small interfering RNA (siRNA) technology was used to demonstrate that Txnip is the key gene through which mannose exerts its effects. Techniques such as colocalization analysis, molecular docking, and overexpression assays further confirmed the direct regulatory relationship between mannose and TXNIP. To elucidate the mechanism of action of mannose, metabolomics techniques were employed to pinpoint glutamine as a core metabolite affected by mannose. Next, various methods, including integrated omics data and the Gene Expression Omnibus (GEO) database, were used to validate the one-way pathway through which TXNIP regulates glutamine. Finally, the therapeutic effect of mannose on IVDD was validated, elucidating the mechanistic role of TXNIP in glutamine metabolism in both intradiscal and orally treated rats. RESULTS: In both in vivo and in vitro experiments, it was discovered that mannose has potent efficacy in alleviating IVDD by inhibiting catabolism. From a mechanistic standpoint, it was shown that mannose exerts its anti-catabolic effects by directly targeting the transcription factor max-like protein X-interacting protein (MondoA), resulting in the upregulation of TXNIP. This upregulation, in turn, inhibits glutamine metabolism, ultimately accomplishing its anti-catabolic effects by suppressing the mitogen-activated protein kinase (MAPK) pathway. More importantly, in vivo experiments have further demonstrated that compared with intradiscal injections, oral administration of mannose at safe concentrations can achieve effective therapeutic outcomes. CONCLUSIONS: In summary, through integrated multiomics analysis, including both in vivo and in vitro experiments, this study demonstrated that mannose primarily exerts its anti-catabolic effects on IVDD through the TXNIP-glutamine axis. These findings provide strong evidence supporting the potential of the use of mannose in clinical applications for alleviating IVDD. Compared to existing clinically invasive or pain-relieving therapies for IVDD, the oral administration of mannose has characteristics that are more advantageous for clinical IVDD treatment.


Assuntos
Proteínas de Ciclo Celular , Glutamina , Degeneração do Disco Intervertebral , Manose , Degeneração do Disco Intervertebral/tratamento farmacológico , Manose/farmacologia , Manose/uso terapêutico , Animais , Ratos , Glutamina/farmacologia , Glutamina/metabolismo , Masculino , Ratos Sprague-Dawley , Humanos , Núcleo Pulposo/efeitos dos fármacos , Núcleo Pulposo/metabolismo
3.
Cell Mol Biol Lett ; 29(1): 79, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38783169

RESUMO

BACKGROUND: Postoperative cognitive dysfunction (POCD) is a common complication after anesthesia/surgery, especially among elderly patients, and poses a significant threat to their postoperative quality of life and overall well-being. While it is widely accepted that elderly patients may experience POCD following anesthesia/surgery, the exact mechanism behind this phenomenon remains unclear. Several studies have indicated that the interaction between silent mating type information regulation 2 homologue 1 (SIRT1) and brain-derived neurotrophic factor (BDNF) is crucial in controlling cognitive function and is strongly linked to neurodegenerative disorders. Hence, this research aims to explore how SIRT1/BDNF impacts cognitive decline caused by anesthesia/surgery in aged mice. METHODS: Open field test (OFT) was used to determine whether anesthesia/surgery affected the motor ability of mice, while the postoperative cognitive function of 18 months old mice was evaluated with Novel object recognition test (NORT), Object location test (OLT) and Fear condition test (FC). The expressions of SIRT1 and other molecules were analyzed by western blot and immunofluorescence staining. The hippocampal synaptic plasticity was detected by Golgi staining and Long-term potentiation (LTP). The effects of SIRT1 and BDNF overexpression as well as chemogenetic activation of glutamatergic neurons in hippocampal CA1 region of 18 months old vesicular glutamate transporter 1 (VGLUT1) mice on POCD were further investigated. RESULTS: The research results revealed that older mice exhibited cognitive impairment following intramedullary fixation of tibial fracture. Additionally, a notable decrease in the expression of SIRT1/BDNF and neuronal excitability in hippocampal CA1 glutamatergic neurons was observed. By increasing levels of SIRT1/BDNF or enhancing glutamatergic neuron excitability in the CA1 region, it was possible to effectively mitigate synaptic plasticity impairment and ameliorate postoperative cognitive dysfunction. CONCLUSIONS: The decline in SIRT1/BDNF levels leading to changes in synaptic plasticity and neuronal excitability in older mice could be a significant factor contributing to cognitive impairment after anesthesia/surgery.


Assuntos
Fator Neurotrófico Derivado do Encéfalo , Região CA1 Hipocampal , Regulação para Baixo , Plasticidade Neuronal , Neurônios , Complicações Cognitivas Pós-Operatórias , Sirtuína 1 , Animais , Sirtuína 1/metabolismo , Sirtuína 1/genética , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Fator Neurotrófico Derivado do Encéfalo/genética , Camundongos , Neurônios/metabolismo , Complicações Cognitivas Pós-Operatórias/metabolismo , Complicações Cognitivas Pós-Operatórias/etiologia , Região CA1 Hipocampal/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Potenciação de Longa Duração , Ácido Glutâmico/metabolismo , Disfunção Cognitiva/etiologia , Disfunção Cognitiva/metabolismo , Disfunção Cognitiva/fisiopatologia
4.
Appl Microbiol Biotechnol ; 108(1): 345, 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38801527

RESUMO

The emergence and quick spread of the plasmid-mediated tigecycline resistance gene tet(X4) and colistin resistance gene mcr-1 have posed a great threat to public health and raised global concerns. It is imperative to develop rapid and accurate detection systems for the onsite surveillance of mcr-1 and tet(X4). In this study, we developed one-tube recombinase polymerase amplification (RPA) and CRISPR-Cas12b integrated mcr-1 and tet(X4) detection systems. We identified mcr-1- and tet(X4)-conserved and -specific protospacers through a comprehensive BLAST search based on the NCBI nt database and used them for assembling the detection systems. Our developed one-tube RPA-CRISPR-Cas12b-based detection systems enabled the specific detection of mcr-1 and tet(X4) with a sensitivity of 6.25 and 9 copies within a detection time of ~ 55 and ~ 40 min, respectively. The detection results using pork and associated environmental samples collected from retail markets demonstrated that our developed mcr-1 and tet(X4) detection systems could successfully monitor mcr-1 and tet(X4), respectively. Notably, mcr-1- and tet(X4)-positive strains were isolated from the positive samples, as revealed using the developed detection systems. Whole-genome sequencing of representative strains identified an mcr-1-carrying IncI2 plasmid and a tet(X4)-carrying IncFII plasmid, which are known as important vectors for mcr-1 and tet(X4) transmission, respectively. Taken together, our developed one-tube RPA-CRISPR-Cas12b-based mcr-1 and tet(X4) detection systems show promising potential for the onsite detection of mcr-1 and tet(X4). KEY POINTS: • One-tube RPA-CRISPR-Cas12b-based mcr-1 and tet(X4) detection systems were developed based on identified novel protospacers. • Both detection systems exhibited high sensitivity and specification with a sample-to-answer time of less than 1 h. • The detection systems show promising potential for onsite detection of mcr-1 and tet(X4).


Assuntos
Sistemas CRISPR-Cas , Proteínas de Escherichia coli/genética , Escherichia coli/genética , Plasmídeos/genética , Farmacorresistência Bacteriana/genética , Suínos , Animais , Colistina/farmacologia , Sensibilidade e Especificidade , Técnicas de Amplificação de Ácido Nucleico/métodos , Antibacterianos/farmacologia
5.
Vet Res ; 55(1): 58, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38715081

RESUMO

The haemagglutinin-neuraminidase (HN) protein, a vital membrane glycoprotein, plays a pivotal role in the pathogenesis of Newcastle disease virus (NDV). Previously, we demonstrated that a mutation in the HN protein is essential for the enhanced virulence of JS/7/05/Ch, a velogenic variant NDV strain originating from the mesogenic vaccine strain Mukteswar. Here, we explored the effects of the HN protein during viral infection in vitro using three viruses: JS/7/05/Ch, Mukteswar, and an HN-replacement chimeric NDV, JS/MukHN. Through microscopic observation, CCK-8, and LDH release assays, we demonstrated that compared with Mukteswar and JS/MukHN, JS/7/05/Ch intensified the cellular damage and mortality attributed to the mutant HN protein. Furthermore, JS/7/05/Ch induced greater levels of apoptosis, as evidenced by the activation of caspase-3/8/9. Moreover, JS/7/05/Ch promoted autophagy, leading to increased autophagosome formation and autophagic flux. Subsequent pharmacological experiments revealed that inhibition of apoptosis and autophagy significantly impacted virus replication and cell viability in the JS/7/05/Ch-infected group, whereas less significant effects were observed in the other two infected groups. Notably, the mutant HN protein enhanced JS/7/05/Ch-induced apoptosis and autophagy by suppressing NF-κB activation, while it mitigated the effects of NF-κB on NDV infection. Overall, our study offers novel insights into the mechanisms underlying the increased virulence of NDV and serves as a reference for the development of vaccines.


Assuntos
Apoptose , Proteína HN , NF-kappa B , Doença de Newcastle , Vírus da Doença de Newcastle , Vírus da Doença de Newcastle/fisiologia , Vírus da Doença de Newcastle/genética , Vírus da Doença de Newcastle/patogenicidade , Animais , Proteína HN/genética , Proteína HN/metabolismo , Doença de Newcastle/virologia , NF-kappa B/metabolismo , Doenças das Aves Domésticas/virologia , Galinhas , Embrião de Galinha
6.
Microorganisms ; 12(4)2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38674616

RESUMO

In our previous microbiome profiling analysis, Lactobacillus (L.) johnsonii was suggested to contribute to resistance against chronic heat stress-induced diarrhea in weaned piglets. Forty-nine L. johnsonii strains were isolated from these heat stress-resistant piglets, and their probiotic properties were assessed. Strains N5 and N7 exhibited a high survival rate in acidic and bile environments, along with an antagonistic effect against Salmonella. To identify genes potentially involved in these observed probiotic properties, the complete genome sequences of N5 and N7 were determined using a combination of Illumina and nanopore sequencing. The genomes of strains N5 and N7 were found to be highly conserved, with two N5-specific and four N7-specific genes identified. Multiple genes involved in gastrointestinal environment adaptation and probiotic properties, including acidic and bile stress tolerance, anti-inflammation, CAZymes, and utilization and biosynthesis of carbohydrate compounds, were identified in both genomes. Comparative genome analysis of the two genomes and 17 available complete L. johnsonii genomes revealed 101 genes specifically harbored by strains N5 and N7, several of which were implicated in potential probiotic properties. Overall, this study provides novel insights into the genetic basis of niche adaptation and probiotic properties, as well as the genome diversity of L. johnsonii.

7.
Biomedicines ; 12(4)2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38672259

RESUMO

Tendinopathy is a prevalent condition in orthopedics patients, exerting a profound impact on tendon functionality. However, its underlying mechanism remains elusive and the efficacy of pharmacological interventions continues to be suboptimal. Verapamil is a clinically used medicine with anti-inflammation and antioxidant functions. This investigation aimed to elucidate the impact of verapamil in tendinopathy and the underlying mechanisms through which verapamil ameliorates the severity of tendinopathy. In in vitro experiments, primary tenocytes were exposed to interleukin-1 beta (IL-1ß) along with verapamil at a concentration of 5 µM. In addition, an in vivo rat tendinopathy model was induced through the localized injection of collagenase into the Achilles tendons of rats, and verapamil was injected into these tendons at a concentration of 5 µM. The in vitro findings highlighted the remarkable ability of verapamil to attenuate extracellular matrix degradation and apoptosis triggered by inflammation in tenocytes stimulated by IL-1ß. Furthermore, verapamil was observed to significantly suppress the inflammation-related MAPK/NFκB pathway. Subsequent investigations revealed that verapamil exerts a remediating effect on mitochondrial dysfunction, which was achieved through activation of the Nrf2/HO-1 pathway. Nevertheless, the protective effect of verapamil was nullified with the utilization of the Nrf2 inhibitor ML385. In summary, the in vivo and in vitro results indicate that the administration of verapamil profoundly mitigates the severity of tendinopathy through suppression of inflammation and activation of the Nrf2/HO-1 pathway. These findings suggest that verapamil is a promising therapeutic agent for the treatment of tendinopathy, deserving further and expanded research.

8.
Enzyme Microb Technol ; 177: 110442, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38593554

RESUMO

Pseudomonas aeruginosa is a Gram-negative bacterium associated with life-threatening healthcare-associated infections (HAIs), including burn wound infections, pneumonia and sepsis. Moreover, P. aeruginosa has been considered a pathogen of global concern due to its rising antibiotic resistance. Efficient identification of P. aeruginosa would significantly benefit the containment of bacterial infections, prevent pathogen transmission, and provide orientated treatment options. The accuracy and specificity of bacterial detection are primarily dictated by the biorecognition molecules employed. Lytic bacteriophages (or phages) could specifically attach to and lyse host bacterial cells. Phages' host specificity is typically determined by their receptor-binding proteins (RBPs), which recognize and adsorb phages to particular bacterial host receptors. This makes RBPs promising biorecognition molecules in bacterial detection. This study identified a novel RBP (Gp130) from the P. aeruginosa phage Henu5. A modified enzyme-linked phage receptor-binding protein assay (ELPRA) was developed for P. aeruginosa detection employing Gp130 as biorecognition molecules. Optimized conditions provided a calibration curve for P. aeruginosa with a range from 1.0 × 103 to 1.0 × 107 CFU/mL, with a limit of detection as low as 10 CFU/mL in phosphate-buffered saline (PBS). With VITEKⓇ 2 Compact system identification (40 positives and 21 negatives) as the gold standard, the sensitivity of ELPRA was 0.950 (0.818-0.991), and the specificity was 0.905 (0.682-0.983) within a 95 %confidence interval. Moreover, the recovery test in spiked mouse serum showed recovery rates ranging from 82.79 %to 98.17%, demonstrating the prospect of the proposed ELPRA for detecting P. aeruginosa in biological samples.


Assuntos
Fagos de Pseudomonas , Pseudomonas aeruginosa , Pseudomonas aeruginosa/virologia , Fagos de Pseudomonas/genética , Fagos de Pseudomonas/metabolismo , Infecções por Pseudomonas/diagnóstico , Infecções por Pseudomonas/microbiologia , Animais , Camundongos , Receptores de Bacteriófagos/metabolismo , Receptores de Bacteriófagos/genética , Proteínas Virais/metabolismo , Proteínas Virais/genética , Humanos , Especificidade de Hospedeiro , Bacteriófagos/genética
9.
Front Immunol ; 15: 1357475, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38576616

RESUMO

Background and Objective: Post-translational modifications of antibodies, with a specific focus on galactosylation, have garnered increasing attention in the context of understanding the pathogenesis and therapeutic implications of autoimmune diseases. However, the comprehensive scope and the clinical significance of antibody galactosylation in the context of Neuromyelitis Optica Spectrum Disorder (NMOSD) remain enigmatic.The primary aim of this research was to discern disparities in serum IgG galactosylation levels between individuals in the acute stage of NMOSD relapse and their age- and sex-matched healthy counterparts. Methods: A total of fourteen untreated NMOSD patients experiencing an acute relapse phase, along with thirteen patients under medication, were enrolled, and an additional twelve healthy controls of the same age and gender were recruited for this investigation. Western blot and lectin enzyme techniques were used to determine the level of IgG galactosylation in the serum samples from these subjects. The expression of CD45+, CD3+, CD3+CD4+, CD3+CD8+, CD19+, and CD16+CD56+ in peripheral blood leukocytes was measured by flow cytometry. The enzyme-linked immunosorbent assay (ELISA) was also used to quantify the amounts of IgG. Magnetic particle luminescence assays are used to detect cytokines. Robust statistical analysis was executed to ascertain the potential associations between IgG galactosylation and the aforementioned immune indices. Results: In the context of NMOSD relapses, serum IgG galactosylation exhibited a notable decrease in untreated patients (0.2482 ± 0.0261), while it remained comparatively stable in medicated patients when contrasted with healthy controls (0.3625 ± 0.0259) (p=0.0159). Furthermore, a noteworthy inverse correlation between serum IgG galactosylation levels and the Expanded Disability Status Scale (EDSS) score during NMOSD relapse was observed (r=-0.4142; p=0.0317). Notably, IgG galactosylation displayed an inverse correlation with NMOSD relapse among peripheral blood CD45+, CD3+, CD3+CD8+, CD19+ cells, as well as with IL-6 and IL-8. Nevertheless, it was not determined whether IgG galactosylation and CD3+CD4+ T cells or other cytokines are statistically significantly correlated. Conclusion: Our research identified reduced IgG galactosylation in the serum of NMOSD patients during relapses, significantly correlated with disease severity, thereby providing a novel target for the diagnosis and treatment of NMOSD in the realm of medical research.


Assuntos
Neuromielite Óptica , Humanos , Inflamação , Citocinas , Imunoglobulina G , Recidiva
10.
Foodborne Pathog Dis ; 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38629721

RESUMO

Plasmid-mediated quinolone resistance (PMQR) genes and mobile colistin resistance (MCR) genes in Escherichia coli (E. coli) have been widely identified, which is considered a global threat to public health. In the present study, we conducted an analysis of MCR genes (mcr-1, mcr-2, mcr-3, mcr-4, and mcr-5) and PMQR genes [qnrA, qnrB, qnrC, qnrD, qnrE1, qnrVC, qnrS, aac(6')-Ib-cr, qepA, and oqxAB] in E. coli from China, 1993-2019. From the 3,663 E. coli isolates examined, 1,613 (44.0%) tested positive for PMQR genes, either individually or in combination. Meanwhile, 262 isolates (7.0%) carried the MCR genes. Minimum inhibitory concentration (MIC) analyses of 17 antibiotics for the MCR gene-carrying strains revealed universal multidrug resistance. Resistance to polymyxin varied between 4 µg/mL and 64 µg/mL, with MIC50 and MIC90 at 8 µg/mL and 16 µg/mL, respectively. In addition, fluctuations in the detection rates of these resistant genes correlated with the introduction of antibiotic policies, host origin, temporal trends, and geographical distribution. Continuous surveillance of PMQR and MCR variants in bacteria is required to implement control and prevention strategies.

11.
Int J Food Microbiol ; 416: 110660, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38460236

RESUMO

The spoilage bacterium Bacillus licheniformis has been identified as a quick and strong biofilm former in the dairy industry. In our previous study, intra-species variation in bacterial biofilms has been observed in diverse B. licheniformis strains from different genetic backgrounds; however, the mechanisms driving the observed heterogeneity of biofilms remain to be determined. In this study, the genotype-phenotype evaluation of the heterogeneity in biofilm formation of four B. licheniformis strains were examined. The heterogeneity in biofilm phenotype was accessed in aspects of bacterial growth and motility, cell viability, biofilm matrix production, and biofilm architectures. The underlying mechanisms of the intra-species variability in biofilms were also explored by whole genome resequencing (WGR). Results from bacterial motility tests showed a diverse motility among the strains, but there was no clear correlation between bacterial motility and biofilm formation. The cell viability results showed a different number of live cells in biofilms at the intra-species level. Analysis of chemical components in biofilm matrix demonstrated the great intra-species differences regarding extracellular matrix composition, and a negative correlation between biofilm formation on stainless steel and the protein: carbohydrate ratio in biofilm matrix was observed. Confocal laser scanning microscopy analysis also revealed the intra-species variability by showing great differences in general properties of B. licheniformis biofilms. WGR results identified important pathways involved in biofilm formation, such as two-component systems, quorum sensing, starch and sucrose metabolism, ABC transporters, glyoxylate and dicarboxylate metabolism, purine metabolism, and a phosphotransferase system. Overall, the above results emphasize the necessity of exploring the intra-species variation in biofilms, and would provide in-depth knowledge for designing efficient biofilm control strategies in the dairy industry.


Assuntos
Bacillus licheniformis , Laticínios/microbiologia , Biofilmes , Bactérias , Genótipo
12.
Food Res Int ; 182: 114145, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38519175

RESUMO

Bacillus licheniformis, a quick and strong biofilm former, is served as a persistent microbial contamination in the dairy industry. Its biofilm formation process is usually regulated by environmental factors including the divalent cation Ca2+. This work aims to investigate how different concentrations of Ca2+ change biofilm-related phenotypes (bacterial motility, biofilm-forming capacity, biofilm structures, and EPS production) of dairy B. licheniformis strains. The Ca2+ ions dependent regulation mechanism for B. licheniformis biofilm formation was further investigated by RNA-sequencing analysis. Results revealed that supplementation of Ca2+ increased B. licheniformis biofilm formation in a dose-dependent way, and enhanced average coverage and thickness of biofilms with complex structures were observed by confocal laser scanning microscopy. Bacterial mobility of B. licheniformis was increased by the supplementation of Ca2+ except the swarming ability at 20 mM of Ca2+. The addition of Ca2+ decreased the contents of polysaccharides but promoted proteins production in EPS, and the ratio of proteins/polysaccharides content was significantly enhanced with increasing Ca2+ concentrations. RNA-sequencing results clearly indicated the variation in regulating biofilm formation under different Ca2+ concentrations, as 939 (671 upregulated and 268 downregulated) and 951 genes (581 upregulated and 370 downregulated) in B. licheniformis BL2-11 were induced by 10 and 20 mM of Ca2+, respectively. Differential genes were annotated in various KEGG pathways, including flagellar assembly, two-component system, quorum sensing, ABC transporters, and related carbohydrate and amino acid metabolism pathways. Collectively, the results unravel the significance of Ca2+ as a biofilm-promoting signal for B. licheniformis in the dairy industry.


Assuntos
Bacillus licheniformis , Bacillus licheniformis/genética , Cálcio , Laticínios/microbiologia , Biofilmes , Bactérias/genética , Polissacarídeos , RNA
13.
J Invertebr Pathol ; 203: 108072, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38341022

RESUMO

Pathogenic microorganism of silkworm are important factors that threaten the high-quality development of sericulture. Among them, Bombyx mori nucleopolyhedrovirus (BmNPV) caused diseases often lead to frequent outbreaks and high mortality, resulting in huge losses to sericultural industry. Current molecular detection methods for BmNPV require expensive equipment and sikilled technical personnel. As a result, the most commonly detection method for silkworm egg production enterprises involves observing the presence of polyhedra under a microscope. However, this method has low accuracy and sensitivity. There is an urgent need to develop a new detection technology with high sensitivity, high specificity, and applicability for silkworm farms, silkworm egg production enterprises and quarantine departments. In this study, we successfully established the CRISPR/Cas13a BmNPV visualized detection technology by combining Recombinase Polymerase Amplification (RPA) technology and CRISPR/Cas13a system. This technology is based on microplate lateral, flow test strips and portable fluorescence detector. The detection sensitivity can reach up to 1 copies/µL for positive standard plasmid and 1 fg/µL for BmNPV genome in 30-45 min, demonstrating high sensitivity. By detecting silkworm tissues infected with different pathogens, we determined that CRISPR/Cas13a detection technology has good specificity. In summary, the newly established nucleic acid detection technology for BmNPV is characterized by high sensitivity, high specificity, low cost and convenience for visualization. It can be applied in field detection and silkworm egg quality monitory system.


Assuntos
Bombyx , Nucleopoliedrovírus , Animais , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Nucleopoliedrovírus/genética , Sensibilidade e Especificidade
14.
Microbiol Res ; 280: 127591, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38181481

RESUMO

Listeria monocytogenes is a ubiquitous foodborne pathogen causing human and animal listeriosis with high mortality. Neurological and maternal-neonatal listeriosis outbreaks in Europe and the United States were frequently associated with clonal complexes CC1, CC2 and CC6 harboring Listeria Pathogenicity Island-1 (LIPI-1), as well as CC4 carrying both LIPI-1 and LIPI-4. However, human listeriosis in China was predominantly linked to CC87 and CC619 from serotype 1/2b. To understand the genetic evolution and distribution patterns of CC619, we characterized the epidemic history, population structure, and transmission feature of CC619 strains through analysis of 49,421 L. monocytogenes genomes globally. We found that CC619 was uniquely distributed in China, and closely related with perinatal infection. As CC619 strains were being mainly isolated from livestock and poultry products, we hypothesized that pigs and live chicken were the reservoirs of CC619. Importantly, all CC619 strains not only harbored the intact LIPI-1 and LIPI-4, but these also carried LIPI-3 that could facilitate host colonization and invasion. The deficiency of LIPI-3 or LIPI-4 markedly decreased L. monocytogenes colonization capacity in a model of intragastric infection in the mouse. Altogether, our findings suggest that the hypervirulent CC619 harboring three pathogenicity islands LIPI-1, LIPI-3 and LIPI-4 is a putatively persistent population in various foods, environment, and human population, warranting the further research for deciphering its pathogenicity and strengthening epidemiological surveillance.


Assuntos
Listeria monocytogenes , Listeriose , Humanos , Recém-Nascido , Estados Unidos , Animais , Camundongos , Suínos , Listeria monocytogenes/genética , Virulência/genética , Listeriose/epidemiologia , Fatores de Virulência/genética , Genômica , Microbiologia de Alimentos
15.
Environ Pollut ; 345: 123424, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38278408

RESUMO

Diclofenac (DCF) is a widely-used nonsteroidal anti-inflammatory drug that is routinely found in surface water bodies. While ozonation and ultraviolet (UV) radiation are commonly employed as disinfection methods in water treatment processes, the degradation of DCF in these processes occurs due to the strong oxidizing activity of the reactive oxygen species produced during both ozonation and UV radiation. Despite extensive studies reporting the removal and transformation of DCF through ozone and UV treatments, the potential hidden hazards of toxicity arising from these processes as well as the identification of the toxic transformation products have often been overlooked. In this study, various toxicities including microtoxicity, genotoxicity and antiestrogenicity were evaluated using multiple in-vitro bioassays. The transformation products were identified via ultra-performance liquid chromatography equipped with mass spectrometry (UPLC-MS). Correlation analysis was employed to gain deeper insight into the contributions of degradation products to overall toxicity. The results revealed that DCF possessed significant genotoxic and antiestrogenic effects, but displayed minimal microtoxicity. Microtoxic products such as those containing carbazole were generated during DCF degradation with ozone, UVA and UVC. Antiestrogenic products with dichloroaniline structures were observed in DCF ozonation but not in photodegradation by UVA and UVC. These findings highlighted the hidden risks associated with the disinfection of water containing micropollutants such as DCF.


Assuntos
Ozônio , Poluentes Químicos da Água , Purificação da Água , Diclofenaco/análise , Cromatografia Líquida , Desinfecção , Espectrometria de Massas em Tandem , Poluentes Químicos da Água/análise , Purificação da Água/métodos , Ozônio/análise , Oxirredução
16.
Int Immunopharmacol ; 128: 111473, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38266448

RESUMO

OBJECTIVE: Osteoarthritis (OA) is a prevalent chronic degenerative joint ailment. Its primary pathological characteristics encompass degeneration of articular cartilage, inflammation of the synovium, and alterations in the subchondral bone proximate to the cartilage. Chondrocytes, as the sole cell type within articular cartilage, assume a crucial role in upholding the dynamic equilibrium between anabolic and catabolic processes within the extracellular matrix of articular cartilage. IL-1ß stands as a pivotal inflammatory factor that instigates cartilage degeneration. piRNA, categorized as a subset of brief non-coding RNAs spanning nucleotide lengths of 26-31nt, assumes a significant regulatory role in cellular function. METHODS: Small RNA sequencing and quantitative PCR (qPCR) were employed to investigate the impact of the inflammatory factor IL-1ß on piRNA expression within chondrocytes. The regulation of mmu_piR_037459 expression in chondrocytes was achieved using piRNA mimics and inhibitors. Additionally, collagen II expression was assessed through both qPCR and Western blot analysis. Chondrocyte apoptosis was evaluated via flow cytometry and clonogenesis assays. To assess the influence of mmu_piR_037459 on osteoarthritis, a mouse model of anterior cruciate ligament transection (ACLT) was established. Furthermore, the regulatory effect of mmu_piR_037459 on USP7 was investigated using bioinformatics and a luciferase reporter gene assay. RESULTS: mmu_piR_037459 inhibited the expression of collagen II in chondrocytes, inhibited the proliferation of chondrocytes, and promoted the apoptosis of chondrocytes. mmu_piR_037459 affected the function of chondrocytes by regulating the expression of USP7. Inhibition of mmu_piR_037459 expression could promote chondrocyte proliferation, inhibit chondrocyte apoptosis, and alleviate the degeneration of OA cartilage. CONCLUSIONS: This study suggests that mmu_piR_037459 maybe a new therapeutic targets and strategies for the treatment of OA.


Assuntos
Cartilagem Articular , Osteoartrite , Camundongos , Animais , Condrócitos , RNA de Interação com Piwi , Peptidase 7 Específica de Ubiquitina/metabolismo , Osteoartrite/metabolismo , Cartilagem Articular/patologia , Interleucina-1beta/metabolismo , Colágeno/metabolismo , Apoptose
17.
Small ; 20(2): e2305949, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37658496

RESUMO

Traditional alternating current filter based on aluminum electrolytic capacitors (AECs) suffer from abrupt drop of filtering capability at ultra-low temperatures (≤-30 °C), which greatly hinders the reliable working of electronics at extremely cold conditions. Herein, an ultra-low-temperature alternating current (AC) filter for the first time enabled by high-frequency supercapacitor based on covalently bonded hollow carbon onion-graphene hybrid structure is reported. It is found that the covalent bonding junctions enable high electronic conductivity and efficient ion adsorption/desorption behavior in the hybrid structure. Moreover, the hybrid structure owns positive curvature and shallows pores for fast ion diffusion kinetics. Consequently, the supercapacitor exhibits a record short resistor-capacitor time constant (τRC ) of 0.098 ms at 120 Hz at room temperature. Combining with low-melting-point electrolyte, the supercapacitor possesses excellent filtering capability and can output stable direct current signal with low fluctuation coefficients in a temperature range of -50 to 0 °C. More interestingly, the filter presents high negative phase angle, low dissipation factor, short τRC , and high capacitance retention below -30 °C, whereas AEC cannot work properly owing to its phase angle<45°. This work realizes the fabrication of an ultra-low-temperature AC filter, which presents a critical step forward for promoting the development of ultra-low-temperature electronics.

18.
Redox Biol ; 69: 102972, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38056310

RESUMO

Oxidative stress (OS) is regarded as the dominant theory for aging. While compelling correlative data have been generated to support the OS theory, a direct cause-and-effect relationship between the accumulation of oxidation-mediated damage and aging has not been firmly established. Superoxide dismutase 1 (SOD1) is a primary antioxidant in all cells. It is, however, susceptible to oxidation due to OS and gains toxic properties to cells. This study investigates the role of oxidized SOD1 derived from amyotrophic lateral sclerosis (ALS) linked SOD1 mutations in cell senescence and aging. Herein, we have shown that the cell line NSC34 expressing the G93A mutation of human SOD1 (hSOD1G93A) entered premature senescence as evidenced by a decreased number of the 5-ethynyl-2'-deoxyuridine (EdU)-positive cells. There was an upregulation of cellular senescence markers compared to cells expressing the wild-type human SOD1 (hSOD1WT). Transgenic mice carrying the hSOD1G93A gene showed aging phenotypes at an early age (135 days) with high levels of P53 and P16 but low levels of SIRT1 and SIRT6 compared with age-matched hSOD1WT transgenic mice. Notably, the levels of oxidized SOD1 were significantly elevated in both the senescent NSC34 cells and 135-day hSOD1G93A mice. Selective removal of oxidized SOD1 by our CT4-directed autophagy significantly decelerated aging, indicating that oxidized SOD1 is a causal factor of aging. Intriguingly, mitochondria malfunctioned in both senescent NSC34 cells and middle-aged hSODG93A transgenic mice. They exhibited increased production of mitochondrial-derived vesicles (MDVs) in response to mild OS in mutant humanSOD1 (hSOD1) transgenic mice at a younger age; however, the mitochondrial response gradually declined with aging. In conclusion, our data show that oxidized SOD1 derived from ALS-linked SOD1 mutants is a causal factor for cellular senescence and aging. Compromised mitochondrial responsiveness to OS may serve as an indicator of premature aging.


Assuntos
Esclerose Lateral Amiotrófica , Sirtuínas , Animais , Humanos , Lactente , Camundongos , Pessoa de Meia-Idade , Envelhecimento/genética , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/metabolismo , Modelos Animais de Doenças , Camundongos Transgênicos , Neurônios Motores , Mutação , Sirtuínas/metabolismo , Superóxido Dismutase/metabolismo , Superóxido Dismutase-1/genética , Superóxido Dismutase-1/metabolismo
19.
BMC Immunol ; 24(1): 48, 2023 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-38012553

RESUMO

BACKGROUND: Control of Tuberculosis (TB) infection is mainly the result of productive teamwork between T-cell populations and antigen presenting cells (APCs). However, APCs activation at the site of initiating cellular immune response during BCG early infection is not completely understood. METHODS: In this study, we injected C57BL/6 mice in intravenous (i.v) or subcutaneous (s.c) route, then splenic or inguinal lymph node (LN) DCs and MΦs were sorted, and mycobacteria uptake, cytokine production, antigen presentation activity, and cell phenotype were investigated and compared, respectively. RESULTS: Ag85A-specific T-cell immune response began at 6 days post BCG infection, when BCG was delivered in s.c route, Th17 immune response could be induced in inguinal LN. BCG could induce high level of activation phenotype in inguinal LN MΦs, while the MHC II presentation of mycobacteria-derived peptides by DCs was more efficient than MΦs. CONCLUSIONS: The results showed that BCG immunized route can decide the main tissue of T-cell immune response. Compared with s.c injected route, APCs undergo more rapid cell activation in spleen post BCG i.v infection.


Assuntos
Mycobacterium bovis , Tuberculose , Camundongos , Animais , Camundongos Endogâmicos C57BL , Células Apresentadoras de Antígenos , Linfócitos T , Vacina BCG
20.
Arch Virol ; 168(12): 288, 2023 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-37947926

RESUMO

Nosocomial infections with the opportunistic bacterium Acinetobacter baumannii pose a severe challenge to clinical treatment, which is aggravated by the increasing occurrence of multi-drug resistance, especially resistance to carbapenems. The use of phage therapy as an alternative and supplement to the current antibiotics has become an important research topic in the post-antibiotic era. This review summarizes in vivo and in vitro studies on phage therapy against multi-drug-resistant A. baumannii infection that have used different approaches, including treatment with a single phage, combination with other phages or non-phage agents, and administration of phage-derived enzymes. We also briefly discuss the current challenges of phage-based therapy as well as promising approaches for the treatment of A. baumannii infection in the future.


Assuntos
Acinetobacter baumannii , Bacteriófagos , Bacteriófagos/genética , Antibacterianos/uso terapêutico , Carbapenêmicos/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA