Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Pestic Biochem Physiol ; 197: 105692, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38072547

RESUMO

The extensive use of herbicides has raised concerns about crop damage, necessitating the development of effective herbicide safeners. Fluxofenim has emerged as a promising herbicide safener; however, it's underlying mechanism remains unclear. Here, we screened two inbred lines 407B and HYZ to investigate the detoxication of fluxofenim in mitigating metolachlor damage in sorghum. Metolachlor inhibited seedling growth in both 407B and HYZ, while, fluxofenim could significantly restore the growth of 407B, but not effectively complement the growth of HYZ. Fluxofenim significantly increased the activities of glutathione-S-transferase (GST) to decrease metolachlor residue in 407B, but not in HYZ. This implys that fluxofenim may reduce metolachlor toxicity by regulating its metabolism. Furthermore, metolachlor suppressed AUX-related and JA-related genes expression, while up-regulated the expression of SA-related genes. Fluxofenim also restored the expression of AUX-related and JA-related genes inhibited by metolachlor and further increased expression of SA-related genes. Moreover, we noted a significant increase in the content of trans-zeatin O-glucoside (tZOG) and Gibberellin1 (GA1) after the fluxofenim treatment. In conclusion, fluxofenim may reduce the injury of herbicide by affecting herbicide metabolism and regulating hormone signaling pathway.


Assuntos
Herbicidas , Sorghum , Herbicidas/toxicidade , Herbicidas/metabolismo , Sorghum/genética , Transcriptoma , Glutationa Transferase/metabolismo , Grão Comestível
2.
Plants (Basel) ; 12(22)2023 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-38005809

RESUMO

The EPIDERMAL PATTERNING FACTOR (EPF) plays a crucial role in plant response to abiotic stress. While the EPF has been extensively studied in model plants such as Arabidopsis thaliana, there is a lack of research on identifying EPF genes in the whole sorghum genome and its response to drought stress. In this study, we employed bioinformatics tools to identify 12 EPF members in sorghum. Phylogenetic tree analysis revealed that SbEPFs can be categorized into four branches. Further examination of the gene structure and protein conservation motifs of EPF family members demonstrated the high conservation of the SbEPF sequence. The promoter region of SbEPFs was found to encompass cis-elements responsive to stress and plant hormones. Moreover, real-time fluorescence quantitative results indicated that the SbEPFs have a tissue-specific expression. Under drought stress treatment, most SbEPF members were significantly up-regulated, indicating their potential role in drought response. Our research findings establish a foundation for investigating the function of SbEPFs and offer candidate genes for stress-resistant breeding and enhanced production in sorghum.

3.
Front Plant Sci ; 14: 1144265, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36909379

RESUMO

Cadmium (Cd) pollution is a serious threat to plant growth and human health. Although the mechanisms controlling the Cd response have been elucidated in other species, they remain unknown in Sorghum (Sorghum bicolor (L.) Moench), an important C4 cereal crop. Here, one-week-old sorghum seedlings were exposed to different concentrations (0, 10, 20, 50, 100, and 150 µM) of CdCl2 and the effects of these different concentrations on morphological responses were evaluated. Cd stress significantly decreased the activities of the enzymes peroxidase (POD), superoxide dismutase (SOD), glutathione S-transferase (GST) and catalase (CAT), and increased malondialdehyde (MDA) levels, leading to inhibition of plant height, decreases in lateral root density and plant biomass production. Based on these results, 10 µM Cd concentration was chosen for further transcription and metabolic analyses. A total of 2683 genes and 160 metabolites were found to have significant differential abundances between the control and Cd-treated groups. Multi-omics integrative analysis revealed that the flavonoid biosynthesis pathway plays a critical role in regulating Cd stress responses in sorghum. These results provide new insights into the mechanism underlying the response of sorghum to Cd.

4.
Int J Mol Sci ; 22(22)2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34830215

RESUMO

Gibberellic acid-stimulated Arabidopsis (GASA) proteins, as cysteine-rich peptides (CRPs), play roles in development and reproduction and biotic and abiotic stresses. Although the GASA gene family has been identified in plants, the knowledge about GASAs in Populus euphratica, the woody model plant for studying abiotic stress, remains limited. Here, we referenced the well-sequenced Populus trichocarpa genome, and identified the GASAs in the whole genome of P. euphratica and P. trichocarpa. 21 candidate genes in P. trichocarpa and 19 candidate genes in P. euphratica were identified and categorized into three subfamilies by phylogenetic analysis. Most GASAs with signal peptides were located extracellularly. The GASA genes in Populus have experienced multiple gene duplication events, especially in the subfamily A. The evolution of the subfamily A, with the largest number of members, can be attributed to whole-genome duplication (WGD) and tandem duplication (TD). Collinearity analysis showed that WGD genes played a leading role in the evolution of GASA genes subfamily B. The expression patterns of P. trichocarpa and P. euphratica were investigated using the PlantGenIE database and the real-time quantitative PCR (qRT-PCR), respectively. GASA genes in P. trichocarpa and P. euphratica were mainly expressed in young tissues and organs, and almost rarely expressed in mature leaves. GASA genes in P. euphratica leaves were also widely involved in hormone responses and drought stress responses. GUS activity assay showed that PeuGASA15 was widely present in various organs of the plant, especially in vascular bundles, and was induced by auxin and inhibited by mannitol dramatically. In summary, this present study provides a theoretical foundation for further research on the function of GASA genes in P. euphratica.


Assuntos
Genes de Plantas , Giberelinas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Populus/genética , Populus/metabolismo , Transcriptoma , Evolução Molecular , Espaço Extracelular/metabolismo , Expressão Gênica/efeitos dos fármacos , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Ácidos Indolacéticos/farmacologia , Manitol/farmacologia , Filogenia , Reguladores de Crescimento de Plantas/farmacologia , Folhas de Planta/genética , Populus/classificação , Regiões Promotoras Genéticas , Reação em Cadeia da Polimerase em Tempo Real/métodos , Regulação para Cima/efeitos dos fármacos , Regulação para Cima/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA