Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
1.
Lancet Reg Health Eur ; 41: 100913, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38737571

RESUMO

Background: Invasive pneumococcal disease due to serotype 3 (S3-IPD) is associated with high mortality rates and long-term adverse effects. The introduction of the 13-valent pneumococcal conjugate vaccine (PCV13) into the Spanish paediatric immunisation programme has not led to a decrease in the adult S3-IPD. We aimed to analyse the incidence, clinical characteristics and genomics of S3-IPD in adults in Spain. Methods: Adult IPD episodes hospitalized in a Southern Barcelona hospital were prospectively collected (1994-2020). For genomic comparison, S3-IPD isolates from six Spanish hospitals (2008-2020) and historical isolates (1989-1993) were analysed by WGS (Illumina and/or MinION). Findings: From 1994 to 2020, 270 S3-IPD episodes were detected. When comparing pre-PCV (1994-2001) and late-PCV13 (2016-2020) periods, only modest changes in S3-IPD were observed (from 1.58 to 1.28 episodes per 100,000 inhabitants year). In this period, the incidence of the two main lineages shifted from 0.38 to 0.67 (CC180-GPSC12) and from 1.18 to 0.55 (CC260-GPSC83). The overall 30-day mortality remained high (24.1%), though a decrease was observed between the pre-PCV (32.4%; 95.0% CI, 22.0-45.0) and the late-PCV13 period (16.7%; 95.0% CI, 7.5-32.0) (p = 0.06). At the same time, comorbidities increased from 77.3% (95.0% CI, 65.0-86.0) to 85.7% (95.0% CI, 71.0-94.0) (p = 0.69). There were no differences in clinical characteristics or 30-day mortality between the two S3 lineages. Although both lineages were genetically homogeneous, the CC180-GPSC12 lineage presented a higher SNP density, a more open pan-genome, and a major presence of prophages and mobile genetic elements carrying resistance genes. Interpretation: Adult S3-IPD remained stable in our area over the study period despite PCV13 introduction in children. However, a clonal shift was observed. The decrease in mortality rates and the increase in comorbidities suggest a change in clinical management and overall population characteristics. The low genetic variability and absence of clinical differences between lineages highlight the role of the S3 capsule in the disease severity. Funding: This study has been funded by Instituto de Salud Carlos III (ISCIII) "PI18/00339", "PI21/01000", "INT22/00096", "FI22/00279", CIBER "CIBERES-CB06/06/0037", "CIBERINFEC-CB21/13/00009" and MSD grant "IISP 60168".

2.
Int J Mol Sci ; 25(5)2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38473941

RESUMO

The PIK3CA and SOX2 genes map at 3q26, a chromosomal region frequently amplified in head and neck cancers, which is associated with poor prognosis. This study explores the clinical significance of PIK3CA and SOX2 gene amplification in early tumorigenesis. Gene copy number was analyzed by real-time PCR in 62 laryngeal precancerous lesions and correlated with histopathological grading and laryngeal cancer risk. Amplification of the SOX2 and PIK3CA genes was frequently detected in 19 (31%) and 32 (52%) laryngeal dysplasias, respectively, and co-amplification in 18 (29%) cases. The PIK3CA and SOX2 amplifications were predominant in high-grade dysplasias and significantly associated with laryngeal cancer risk beyond histological criteria. Multivariable Cox analysis further revealed PIK3CA gene amplification as an independent predictor of laryngeal cancer development. Interestingly, combined PIK3CA and SOX2 amplification allowed us to distinguish three cancer risk subgroups, and PIK3CA and SOX2 co-amplification was found the strongest predictor by ROC analysis. Our data demonstrate the clinical relevance of PIK3CA and SOX2 amplification in early laryngeal tumorigenesis. Remarkably, PIK3CA amplification was found to be an independent cancer predictor. Furthermore, combined PIK3CA and SOX2 amplification is emerging as a valuable and easy-to-implement tool for cancer risk assessment in patients with laryngeal precancerous lesions beyond current WHO histological grading.


Assuntos
Neoplasias Laríngeas , Lesões Pré-Cancerosas , Humanos , Amplificação de Genes , Neoplasias Laríngeas/genética , Lesões Pré-Cancerosas/genética , Classe I de Fosfatidilinositol 3-Quinases/genética , Carcinogênese/genética , Fatores de Transcrição SOXB1/genética
3.
J Fungi (Basel) ; 10(3)2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38535218

RESUMO

One of the systems responsible for the recognition and repair of mistakes occurring during cell replication is the DNA mismatch repair (MMR) system. Two major protein complexes constitute the MMR pathway: MutS and MutL. Here, we investigated the possible relation of four A. fumigatus MMR genes (msh2, msh6, pms1, and mlh1) with the development of azole resistance related to the phenomenon of multi-drug resistance. We examined the MMR gene variations in 163 Aspergillus fumigatus genomes. Our analysis showed that genes msh2, pms1, and mlh1 have low genetic variability and do not seem to correlate with drug resistance. In contrast, there is a nonsynonymous mutation (G240A) in the msh6 gene that is harbored by 42% of the strains, most of them also harboring the TR34/L98H azole resistance mechanism in cyp51A. The msh6 gene was deleted in the akuBKU80A. fumigatus strain, and the ∆msh6 isolates were analyzed for fitness, azole susceptibility, and virulence capacity, showing no differences compared with the akuBKU80 parental strain. Wild-type msh6 and Δmsh6 strains were grown on high concentrations of azole and other non-azole fungicides used in crop protection. A 10- and 2-fold higher mutation frequency in genes that confer resistance to boscalid and benomyl, respectively, were observed in Δmsh6 strains compared to the wild-type. This study suggests a link between Msh6 and fungicide resistance acquisition.

4.
J Clin Med ; 13(1)2024 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-38202288

RESUMO

This comprehensive review explores the role of Functional Near-Infrared Spectroscopy (fNIRS) in advancing our understanding of the visual system. Beginning with an introduction to fNIRS, we delve into its historical development, highlighting how this technology has evolved over time. The core of the review critically examines the advantages and disadvantages of fNIRS, offering a balanced view of its capabilities and limitations in research and clinical settings. We extend our discussion to the diverse applications of fNIRS beyond its traditional use, emphasizing its versatility across various fields. In the context of the visual system, this review provides an in-depth analysis of how fNIRS contributes to our understanding of eye function, including eye diseases. We discuss the intricacies of the visual cortex, how it responds to visual stimuli and the implications of these findings in both health and disease. A unique aspect of this review is the exploration of the intersection between fNIRS, virtual reality (VR), augmented reality (AR) and artificial intelligence (AI). We discuss how these cutting-edge technologies are synergizing with fNIRS to open new frontiers in visual system research. The review concludes with a forward-looking perspective, envisioning the future of fNIRS in a rapidly evolving technological landscape and its potential to revolutionize our approach to studying and understanding the visual system.

5.
Clin Transl Oncol ; 26(1): 278-287, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37368200

RESUMO

INTRODUCTION: Acute lymphoblastic leukemia (ALL) is the most common cancer among children. Measurable residual disease (MRD, previously named minimal residual disease) study can guide therapy adjustments or preemptive interventions that might avoid hematological relapse. METHODS: Clinical decision making and patient outcome were evaluated in 80 real-life childhood ALL patients, according to the results observed in 544 bone marrow samples analyzed with three MRD methods: multiparametric flow cytometry (MFC), fluorescent in-situ hybridization (FISH) on B or T-purified lymphocytes and patient-specific nested reverse transcription polymerase chain reaction (RT-PCR). RESULTS: Estimated 5 year overall survival and event-free survival were 94% and 84.1%, respectively. A total of 12 relapses in 7 patients were associated with positive MRD detection with at least one of the three methods: MFC (p < 0.00001), FISH (p < 0.00001) and RT-PCR (p = 0.013). MRD assessment allowed the anticipation of relapse and adapted early interventions with different approaches including chemotherapy intensification, blinatumomab, HSCT and targeted therapy to halt relapse in five patients, although two of them relapsed afterwards. CONCLUSION: MFC, FISH and RT-PCR are complementary methods for MRD monitoring in pediatric ALL. Although, our data clearly show that MDR positive detection is associated with relapse, continuation of standard treatment, intensification or other early interventions were able to halt relapse in patients with different risks and genetic background. More sensitive and specific methods are warranted to enhance this approach. However, whether early treatment of MRD can improve overall survival in patients with childhood ALL needs to be evaluated in adequately controlled clinical trials.


Assuntos
Leucemia-Linfoma Linfoblástico de Células Precursoras , Criança , Humanos , Neoplasia Residual/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/diagnóstico , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/terapia , Recidiva , Citometria de Fluxo/métodos
6.
Front Cell Infect Microbiol ; 13: 1276406, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37900311

RESUMO

Reactive oxidant species (ROS) are unstable, highly reactive molecules that are produced by cells either as byproducts of metabolism or synthesized by specialized enzymes. ROS can be detrimental, e.g., by damaging cellular macromolecules, or beneficial, e.g., by participating in signaling. An increasing body of evidence shows that various fungal species, including both yeasts and molds, increase ROS production upon exposure to the antifungal drugs currently used in the clinic: azoles, polyenes, and echinocandins. However, the implications of these findings are still largely unclear due to gaps in knowledge regarding the chemical nature, molecular origins, and functional consequences of these ROS. Because the detection of ROS in fungal cells has largely relied on fluorescent probes that lack specificity, the chemical nature of the ROS is not known, and it may vary depending on the specific fungus-drug combination. In several instances, the origin of antifungal drug-induced ROS has been identified as the mitochondria, but further experiments are necessary to strengthen this conclusion and to investigate other potential cellular ROS sources, such as the ER, peroxisomes, and ROS-producing enzymes. With respect to the function of the ROS, several studies have shown that they contribute to the drugs' fungicidal activities and may be part of drug-induced programmed cell death (PCD). However, whether these "pro-death" ROS are a primary consequence of the antifungal mechanism of action or a secondary consequence of drug-induced PCD remains unclear. Finally, several recent studies have raised the possibility that ROS induction can serve an adaptive role, promoting antifungal drug tolerance and the evolution of drug resistance. Filling these gaps in knowledge will reveal a new aspect of fungal biology and may identify new ways to potentiate antifungal drug activity or prevent the evolution of antifungal drug resistance.


Assuntos
Antifúngicos , Oxidantes , Antifúngicos/farmacologia , Antifúngicos/uso terapêutico , Espécies Reativas de Oxigênio/metabolismo , Equinocandinas/farmacologia , Apoptose
7.
Nat Commun ; 14(1): 2575, 2023 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-37142597

RESUMO

Noradrenergic and mesenchymal identities have been characterized in neuroblastoma cell lines according to their epigenetic landscapes and core regulatory circuitries. However, their relationship and relative contribution in patient tumors remain poorly defined. We now document spontaneous and reversible plasticity between the two identities, associated with epigenetic reprogramming, in several neuroblastoma models. Interestingly, xenografts with cells from each identity eventually harbor a noradrenergic phenotype suggesting that the microenvironment provides a powerful pressure towards this phenotype. Accordingly, such a noradrenergic cell identity is systematically observed in single-cell RNA-seq of 18 tumor biopsies and 15 PDX models. Yet, a subpopulation of these noradrenergic tumor cells presents with mesenchymal features that are shared with plasticity models, indicating that the plasticity described in these models has relevance in neuroblastoma patients. This work therefore emphasizes that intrinsic plasticity properties of neuroblastoma cells are dependent upon external cues of the environment to drive cell identity.


Assuntos
Plasticidade Celular , Neuroblastoma , Humanos , Neuroblastoma/metabolismo , Linhagem Celular Tumoral , Microambiente Tumoral/genética
8.
Biomed Pharmacother ; 161: 114502, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37002578

RESUMO

Head and neck cancers (HNC) are a diverse group of aggressive malignancies with high morbidity and mortality, leading to almost half-million deaths annually worldwide. A better understanding of the molecular processes governing tumor formation and progression is crucial to improve current diagnostic and prognostic tools as well as to develop more personalized treatment strategies. Tumors are highly complex and heterogeneous structures in which growth and dissemination is not only governed by the cancer cells intrinsic mechanisms, but also by the surrounding tumor microenvironment (TME). Cancer-associated fibroblasts (CAFs) emerge as predominant TME components and key players in the generation of permissive conditions that ultimately impact in tumor progression and metastatic dissemination. Although CAFs were initially considered a consequence of tumor development, it is now well established that they actively contribute to numerous cancer hallmarks i.e., tumor cell growth, migration and invasion, cancer cell stemness, angiogenesis, metabolic reprograming, inflammation, and immune system modulation. In this scenario, therapeutic strategies targeting CAF functions could potentially have a major impact in cancer therapeutics, providing avenues for new treatment options or for improving efficacy in established approaches. This review is focused on thoroughly dissecting existing evidences supporting the contribution of CAFs in HNC biology with an emphasis on current knowledge of the key molecules and pathways involved in CAF-tumor crosstalk, and their potential as novel biomarkers and/or therapeutic targets to effectively interfere the tumor-stroma crosstalk for HNC patients benefit. involved in CAF-tumor crosstalk, and their potential as novel biomarkers and/or therapeutic targets to effec- tively interfere the tumor-stroma crosstalk for HNC patients benefit.


Assuntos
Fibroblastos Associados a Câncer , Neoplasias de Cabeça e Pescoço , Humanos , Fibroblastos Associados a Câncer/metabolismo , Microambiente Tumoral , Neoplasias de Cabeça e Pescoço/patologia , Biomarcadores/metabolismo , Fibroblastos/metabolismo
9.
Front Immunol ; 14: 1124018, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36993985

RESUMO

Background: The role of allergen sensitization in IL-31 production by T cells and specifically in the clinical context of atopic dermatitis (AD) has not been characterized. Methods: The response to house dust mite (HDM) in purified memory T cells cocultured with epidermal cells from AD patients (n=58) and control subjects (n=11) was evaluated. AD-associated cytokines from culture supernatants, plasma proteins and mRNA expression from cutaneous lesions were assessed and related with the clinical features of the patients. Results: HDM-induced IL-31 production by memory T cells defined two subsets of AD patients according to the presence or absence of IL-31 response. Patients in the IL-31 producing group showed a more inflammatory profile, and increased HDM-specific (sp) and total IgE levels compared to the IL-31 non-producing group. A correlation between IL-31 production and patient's pruritus intensity, plasma CCL27 and periostin was detected. When the same patients were analyzed based on sp IgE and total IgE levels, an increased IL-31 in vitro response, as well as type 2 markers in plasma and cutaneous lesions, was found in patients with sp IgE levels > 100 kUA/L and total IgE levels > 1000 kU/L. The IL-31 response by memory T cells was restricted to the cutaneous lymphocyte-associated antigen (CLA)+ T-cell subset. Conclusion: IgE sensitization to HDM allows stratifying IL-31 production by memory T cells in AD patients and relating it to particular clinical phenotypes of the disease.


Assuntos
Dermatite Atópica , Animais , Alérgenos , Células T de Memória , Citocinas , Pyroglyphidae , Imunoglobulina E
10.
Biomed Pharmacother ; 158: 114176, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36916400

RESUMO

BACKGROUND: Cancer-associated fibroblasts (CAFs) are major players in tumor-stroma communication, and participate in several cancer hallmarks to drive tumor progression and metastatic dissemination. This study investigates the driving effects of tumor-secreted factors on CAF biology, with the ultimate goal of identifying effective therapeutic targets/strategies for head and neck squamous cell carcinomas (HNSCC). METHODS: Functionally, conditioned media (CM) from different HNSCC-derived cell lines and normal keratinocytes (Kc) were tested on the growth and invasion of populations of primary CAFs and normal fibroblasts (NFs) using 3D invasion assays in collagen matrices. The changes in MMPs expression were evaluated by RT-qPCR and kinase enrichment was analyzed using mass spectrometry phosphoproteomics. RESULTS: Our results consistently demonstrate that HNSCC-secreted factors (but not Kc CM) specifically and robustly promoted pro-invasive properties in both CAFs and NFs, thereby reflecting the plasticity of fibroblast subtypes. Concomitantly, HNSCC-secreted factors massively increased metalloproteinases levels in CAFs and NFs. By contrast, HNSCC CM and Kc CM exhibited comparable growth-promoting effects on stromal fibroblasts. Mechanistically, phosphoproteomic analysis predominantly revealed phosphorylation changes in fibroblasts upon treatment with HNSCC CM, and various promising kinases were identified: MKK7, MKK4, ASK1, RAF1, BRAF, ARAF, COT, PDK1, RSK2 and AKT1. Interestingly, pharmacologic inhibition of RAF1/BRAF using sorafenib emerged as the most effective drug to block tumor-promoted fibroblast invasion without affecting fibroblast viability CONCLUSIONS: Our findings demonstrate that HNSCC-secreted factors specifically fine tune the invasive potential of stromal fibroblasts, thereby generating tumor-driven pro-invasive niches, which in turn to ultimately facilitate cancer cell dissemination. Furthermore, the RAF/BRAF inhibitor sorafenib was identified as a promising candidate to effectively target the onset of pro-invasive clusters of stromal fibroblasts in the HNSCC microenvironment.


Assuntos
Carcinoma de Células Escamosas , Neoplasias de Cabeça e Pescoço , Humanos , Carcinoma de Células Escamosas de Cabeça e Pescoço/patologia , Carcinoma de Células Escamosas/patologia , Sorafenibe/uso terapêutico , Proteínas Proto-Oncogênicas B-raf/metabolismo , Secretoma , Linhagem Celular Tumoral , Neoplasias de Cabeça e Pescoço/patologia , Fibroblastos/metabolismo , Microambiente Tumoral/fisiologia
11.
Clin Transl Oncol ; 25(5): 1446-1454, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36598635

RESUMO

PURPOSE: Although outcomes of children with acute myeloid leukemia (AML) have improved over the last decades, around one-third of patients relapse. Measurable (or minimal) residual disease (MRD) monitoring may guide therapy adjustments or pre-emptive treatments before overt hematological relapse. METHODS: In this study, we review 297 bone marrow samples from 20 real-life pediatric AML patients using three MRD monitoring methods: multiparametric flow cytometry (MFC), fluorescent in situ hybridization (FISH) and polymerase chain reaction (PCR). RESULTS: Patients showed a 3-year overall survival of 73% and a 3-year event-free survival of 68%. Global relapse rate was of 25%. All relapses were preceded by the reappearance of MRD detection by: (1) MFC (p = 0.001), (2) PCR and/or FISH in patients with an identifiable chromosomal translocation (p = 0.03) and/or (3) one log increase of Wilms tumor gene 1 (WT1) expression in two consecutive samples (p = 0.02). The median times from MRD detection to relapse were 26, 111, and 140 days for MFC, specific PCR and FISH, and a one log increment of WT1, respectively. CONCLUSIONS: MFC, FISH and PCR are complementary methods that can anticipate relapse of childhood AML by weeks to several months. However, in our series, pre-emptive therapies were not able to prevent disease progression. Therefore, more sensitive MRD monitoring methods that further anticipate relapse and more effective pre-emptive therapies are needed.


Assuntos
Leucemia Mieloide Aguda , Humanos , Citometria de Fluxo/métodos , Hibridização in Situ Fluorescente , Leucemia Mieloide Aguda/patologia , Neoplasia Residual/genética , Reação em Cadeia da Polimerase , Intervalo Livre de Progressão , Recidiva , Estudos Retrospectivos
12.
Clin Cancer Res ; 29(7): 1317-1331, 2023 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-36602782

RESUMO

PURPOSE: ALK-activating mutations are identified in approximately 10% of newly diagnosed neuroblastomas and ALK amplifications in a further 1%-2% of cases. Lorlatinib, a third-generation anaplastic lymphoma kinase (ALK) inhibitor, will soon be given alongside induction chemotherapy for children with ALK-aberrant neuroblastoma. However, resistance to single-agent treatment has been reported and therapies that improve the response duration are urgently required. We studied the preclinical combination of lorlatinib with chemotherapy, or with the MDM2 inhibitor, idasanutlin, as recent data have suggested that ALK inhibitor resistance can be overcome through activation of the p53-MDM2 pathway. EXPERIMENTAL DESIGN: We compared different ALK inhibitors in preclinical models prior to evaluating lorlatinib in combination with chemotherapy or idasanutlin. We developed a triple chemotherapy (CAV: cyclophosphamide, doxorubicin, and vincristine) in vivo dosing schedule and applied this to both neuroblastoma genetically engineered mouse models (GEMM) and patient-derived xenografts (PDX). RESULTS: Lorlatinib in combination with chemotherapy was synergistic in immunocompetent neuroblastoma GEMM. Significant growth inhibition in response to lorlatinib was only observed in the ALK-amplified PDX model with high ALK expression. In this PDX, lorlatinib combined with idasanutlin resulted in complete tumor regression and significantly delayed tumor regrowth. CONCLUSIONS: In our preclinical neuroblastoma models, high ALK expression was associated with lorlatinib response alone or in combination with either chemotherapy or idasanutlin. The synergy between MDM2 and ALK inhibition warrants further evaluation of this combination as a potential clinical approach for children with neuroblastoma.


Assuntos
Neoplasias Pulmonares , Neuroblastoma , Camundongos , Animais , Humanos , Quinase do Linfoma Anaplásico/genética , Aminopiridinas/uso terapêutico , Lactamas Macrocíclicas/farmacologia , Lactamas Macrocíclicas/uso terapêutico , Neuroblastoma/tratamento farmacológico , Neuroblastoma/genética , Neuroblastoma/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Neoplasias Pulmonares/tratamento farmacológico
13.
Front Cell Dev Biol ; 10: 1009908, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36247003

RESUMO

Annexins are an extensive superfamily of structurally related calcium- and phospholipid-binding proteins, largely conserved and widely distributed among species. Twelve human annexins have been identified, referred to as Annexin A1-13 (A12 remains as of yet unassigned), whose genes are spread throughout the genome on eight different chromosomes. According to their distinct tissue distribution and subcellular localization, annexins have been functionally implicated in a variety of biological processes relevant to both physiological and pathological conditions. Dysregulation of annexin expression patterns and functions has been revealed as a common feature in multiple cancers, thereby emerging as potential biomarkers and molecular targets for clinical application. Nevertheless, translation of this knowledge to the clinic requires in-depth functional and mechanistic characterization of dysregulated annexins for each individual cancer type, since each protein exhibits varying expression levels and phenotypic specificity depending on the tumor types. This review specifically and thoroughly examines the current knowledge on annexin dysfunctions in carcinogenesis. Hence, available data on expression levels, mechanism of action and pathophysiological effects of Annexin A1-13 among different cancers will be dissected, also further discussing future perspectives for potential applications as biomarkers for early diagnosis, prognosis and molecular-targeted therapies. Special attention is devoted to head and neck cancers (HNC), a complex and heterogeneous group of aggressive malignancies, often lately diagnosed, with high mortality, and scarce therapeutic options.

15.
J Fungi (Basel) ; 8(3)2022 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-35330318

RESUMO

Most cases of invasive aspergillosis are caused by Aspergillus fumigatus, whose conidia are ubiquitous in the environment. Additionally, in indoor environments, such as houses or hospitals, conidia are frequently detected too. Hospital-acquired aspergillosis is usually associated with airborne fungal contamination of the hospital air, especially after building construction events. A. fumigatus strain typing can fulfill many needs both in clinical settings and otherwise. The high incidence of aspergillosis in COVID patients from our hospital, made us wonder if they were hospital-acquired aspergillosis. The purpose of this study was to evaluate whether the hospital environment was the source of aspergillosis infection in CAPA patients, admitted to the Hospital Universitario Central de Asturias, during the first and second wave of the COVID-19 pandemic, or whether it was community-acquired aspergillosis before admission. During 2020, sixty-nine A. fumigatus strains were collected for this study: 59 were clinical isolates from 28 COVID-19 patients, and 10 strains were environmentally isolated from seven hospital rooms and intensive care units. A diagnosis of pulmonary aspergillosis was based on the ECCM/ISHAM criteria. Strains were genotyped by PCR amplification and sequencing of a panel of four hypervariable tandem repeats within exons of surface protein coding genes (TRESPERG). A total of seven genotypes among the 10 environmental strains and 28 genotypes among the 59 clinical strains were identified. Genotyping revealed that only one environmental A. fumigatus from UCI 5 (box 54) isolated in October (30 October 2020) and one A. fumigatus isolated from a COVID-19 patient admitted in Pneumology (Room 532-B) in November (24 November 2020) had the same genotype, but there was a significant difference in time and location. There was also no relationship in time and location between similar A. fumigatus genotypes of patients. The global A. fumigatus, environmental and clinical isolates, showed a wide diversity of genotypes. To our knowledge, this is the first study monitoring and genotyping A. fumigatus isolates obtained from hospital air and COVID-19 patients, admitted with aspergillosis, during one year. Our work shows that patients do not acquire A. fumigatus in the hospital. This proves that COVID-associated aspergillosis in our hospital is not a nosocomial infection, but supports the hypothesis of "community aspergillosis" acquisition outside the hospital, having the home environment (pandemic period at home) as the main suspected focus of infection.

16.
Crit Care ; 26(1): 4, 2022 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-35000603

RESUMO

BACKGROUND: Despite growing interest in treatment strategies that limit oxygen exposure in ICU patients, no studies have compared conservative oxygen with standard oxygen in postsurgical patients with sepsis/septic shock, although there are indications that it may improve outcomes. It has been proven that high partial pressure of oxygen in arterial blood (PaO2) reduces the rate of surgical-wound infections and mortality in patients under major surgery. The aim of this study is to examine whether PaO2 is associated with risk of death in adult patients with sepsis/septic shock after major surgery. METHODS: We performed a secondary analysis of a prospective observational study in 454 patients who underwent major surgery admitted into a single ICU. Patients were stratified in two groups whether they had hyperoxemia, defined as PaO2 > 100 mmHg (n = 216), or PaO2 ≤ 100 mmHg (n = 238) at the day of sepsis/septic shock onset according to SEPSIS-3 criteria maintained during 48 h. Primary end-point was 90-day mortality after diagnosis of sepsis. Secondary endpoints were ICU length of stay and time to extubation. RESULTS: In patients with PaO2 ≤ 100 mmHg, we found prolonged mechanical ventilation (2 [8] vs. 1 [4] days, p < 0.001), higher ICU stay (8 [13] vs. 5 [9] days, p < 0.001), higher organ dysfunction as assessed by SOFA score (9 [3] vs. 7 [5], p < 0.001), higher prevalence of septic shock (200/238, 84.0% vs 145/216) 67.1%, p < 0.001), and higher 90-day mortality (37.0% [88] vs. 25.5% [55], p = 0.008). Hyperoxemia was associated with higher probability of 90-day survival in a multivariate analysis (OR 0.61, 95%CI: 0.39-0.95, p = 0.029), independent of age, chronic renal failure, procalcitonin levels, and APACHE II score > 19. These findings were confirmed when patients with severe hypoxemia at the time of study inclusion were excluded. CONCLUSIONS: Oxygenation with a PaO2 above 100 mmHg was independently associated with lower 90-day mortality, shorter ICU stay and intubation time in critically ill postsurgical sepsis/septic shock patients. Our findings open a new venue for designing clinical trials to evaluate the boundaries of PaO2 in postsurgical patients with severe infections.


Assuntos
Sepse , Choque Séptico , Adulto , Humanos , Unidades de Terapia Intensiva , Pró-Calcitonina , Prognóstico , Estudos Prospectivos
17.
Mycoses ; 65(2): 178-185, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34806786

RESUMO

Antifungal susceptibility testing is an essential tool for guiding antifungal therapy. Reference methods are complex and usually only available in specialised laboratories. We have designed an expanded agar-based screening method for the detection of azole-resistant Aspergillus fumigatus isolates. Normally, identification of resistance mechanisms is obtained only after sequencing the cyp51A gene and promoter. However, our screening method provides azole resistance detection and presumptive resistance mechanisms identification. A previous agar-based method consisting of four wells containing voriconazole, itraconazole, posaconazole and a growth control, detected azole resistance to clinical azoles. Here, we have modified the concentrations of voriconazole and posaconazole to adapt to the updated EUCAST breakpoints against A. fumigatus. We have also expanded the method to include environmental azoles to assess azole resistance and the azole resistance mechanism involved. We used a collection of A. fumigatus including 54 azole-resistant isolates with Cyp51A modifications (G54, M220, G448S, TR53 , TR34 /L98H, TR46 /Y121F/T289A, TR34 /L98H/S297T/F495I), and 50 azole susceptible isolates with wild-type Cyp51A. The screening method detects azole-resistant A. fumigatus isolates when there is growth in any of the azole-containing wells after 48h. The growth pattern in the seven azoles tested helps determine the underlying azole resistance mechanism. This approach is designed for surveillance screening of A. fumigatus azole-resistant isolates and can be useful for the clinical management of patients prior to antifungal susceptibility testing confirmation.


Assuntos
Antifúngicos , Aspergillus fumigatus , Azóis , Farmacorresistência Fúngica , Ágar , Antifúngicos/farmacologia , Aspergillus fumigatus/efeitos dos fármacos , Aspergillus fumigatus/genética , Azóis/farmacologia , Farmacorresistência Fúngica/efeitos dos fármacos , Proteínas Fúngicas/genética , Testes de Sensibilidade Microbiana , Voriconazol/farmacologia
18.
Front Med (Lausanne) ; 8: 731911, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34778294

RESUMO

Psoriasis is a common inflammatory skin condition resulting from the interplay between epidermal keratinocytes and immunological cellular components. This sustained inflammation is essentially driven by pro-inflammatory cytokines with the IL-23/IL-17 axis playing a critical central role, as proved by the clinical efficacy of their blockade in patients. Among all the CD45R0+ memory T cell subsets, those with special tropism for cutaneous tissues are identified by the expression of the Cutaneous Lymphocyte-associated Antigen (CLA) carbohydrate on their surface, that is induced during T cell maturation particularly in the skin-draining lymph nodes. Because of their ability to recirculate between the skin and blood, circulating CLA+ memory T cells reflect the immune abnormalities found in different human cutaneous conditions, such as psoriasis. Based on this premise, studying the effect of different environmental microbial triggers and psoriatic lesional cytokines on CLA+ memory T cells, in the presence of autologous epidermal cells from patients, revealed important IL-17 cytokines responses that are likely to enhance the pro-inflammatory loop underlying the development of psoriatic lesions. The goal of this mini-review is to present latest data regarding cytokines implicated in plaque and guttate psoriasis immunopathogenesis from the prism of CLA+ memory T cells, that are specifically related to the cutaneous immune system.

19.
J Mol Diagn ; 23(12): 1714-1721, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34656762

RESUMO

Retinoblastoma is a malignant tumor of the infant retina. Nearly half of patients are predisposed to retinoblastoma by a germline RB1 pathogenic variant. Nonhereditary retinoblastoma is mainly caused by inactivation of both RB1 alleles at a somatic level. Several polymorphisms have been reported as biomarkers of retinoblastoma risk, aggressiveness, or invasion. The most informative genetic testing is obtained from tumor DNA. Historically, access to tumor DNA has been warranted by the frequent indication of enucleation, which has decreased because of advances in conservative approaches. Recent studies showed that tumor cell-free DNA can be analyzed in aqueous humor from retinoblastoma patients. This report describes a next-generation sequencing method relying on unique molecular identifiers for a highly sensitive detection of retinoblastoma genetic predisposition and biomarkers in a single analysis. It is the first use of unique molecular identifiers for retinoblastoma genetics. This gene panel enables the detection of RB1 point variants, large genome rearrangements, and loss of heterozygosity. It is adapted for genomic DNA extracted from blood or tumor DNA extracted from tumor fragment, aqueous humor, or plasma. The access to tumor cell-free DNA improves the diagnosis of genetic predisposition in case of conservative ocular therapy and provides access to biomarkers guiding the treatment strategy. The analysis of a gene panel is cost-effective and can be easily implemented in diagnostic laboratories.


Assuntos
Biomarcadores Tumorais/genética , Neoplasias da Retina/genética , Retinoblastoma/genética , Humor Aquoso/fisiologia , Biomarcadores Tumorais/sangue , Criança , Pré-Escolar , Feminino , Predisposição Genética para Doença , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Lactente , Perda de Heterozigosidade , Masculino , Polimorfismo de Nucleotídeo Único , Proteínas de Ligação a Retinoblastoma/genética , Ubiquitina-Proteína Ligases/genética
20.
Molecules ; 26(19)2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-34641518

RESUMO

Invasive aspergillosis, mainly caused by Aspergillus fumigatus, can lead to severe clinical outcomes in immunocompromised individuals. Antifungal treatment, based on the use of azoles, is crucial to increase survival rates. However, the recent emergence of azole-resistant A. fumigatus isolates is affecting the efficacy of the clinical therapy and lowering the success rate of azole strategies against aspergillosis. Azole resistance mechanisms described to date are mainly associated with mutations in the azole target gene cyp51A that entail structural changes in Cyp51A or overexpression of the gene. However, strains lacking cyp51A modifications but resistant to clinical azoles have recently been detected. Some genes have been proposed as new players in azole resistance. In this study, the gene hmg1, recently related to azole resistance, and its paralogue hmg2 were studied in a collection of fifteen azole-resistant strains without cyp51A modifications. Both genes encode HMG-CoA reductases and are involved in the ergosterol biosynthesis. Several mutations located in the sterol sensing domain (SSD) of Hmg1 (D242Y, G307D/S, P309L, K319Q, Y368H, F390L and I412T) and Hmg2 (I235S, V303A, I312S, I360F and V397C) were detected. The role of these mutations in conferring azole resistance is discussed in this work.


Assuntos
Antifúngicos/farmacologia , Aspergillus fumigatus/efeitos dos fármacos , Farmacorresistência Fúngica/genética , Proteínas Fúngicas/genética , Hidroximetilglutaril-CoA Redutases/genética , Antifúngicos/química , Aspergilose/microbiologia , Aspergillus fumigatus/genética , Aspergillus fumigatus/isolamento & purificação , Azóis/química , Sistema Enzimático do Citocromo P-450/genética , Farmacorresistência Fúngica/efeitos dos fármacos , Proteínas Fúngicas/química , Regulação Fúngica da Expressão Gênica/efeitos dos fármacos , Humanos , Hidroximetilglutaril-CoA Redutases/química , Testes de Sensibilidade Microbiana , Mutação Puntual , Regiões Promotoras Genéticas , Sequenciamento Completo do Genoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA