Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Pharm Biomed Anal ; 198: 113988, 2021 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-33676166

RESUMO

The multi-attribute method (MAM) based on liquid chromatography (LC)-tandem mass spectrometry is emerging as a powerful tool to directly monitor multiple product quality attributes simultaneously. To better implement MAM, either for product characterization or for quality control (QC), there is a need for a robust, universal, and high-throughput workflow that can be broadly adopted in different laboratories with minimal barriers to implementation. Manual preparation of samples for MAM, however, is labor intensive and produces nontrivial variations across analysts and laboratories. We describe the development of a fully automated peptide mapping procedure with a high-throughput robotic liquid handling system to improve sample handling capacity and outcome reproducibility while saving analyst hands-on time. Our procedure features the automation of a "microdialysis" step, an efficient desalting approach prior to proteolytic digestion that optimizes digestion completeness and consistency each time. The workflow is completely hands-free and requires the analyst only to pre-normalize the sample concentrations and to load buffers and reagents at their designated positions on the robotic deck. The robotic liquid handler performs all the subsequent preparation steps and stores the digested samples on a chiller unit to await retrieval for further analysis. We also demonstrate that the manual and automated procedures are comparable with regard to protein sequence coverage, digestion completeness and consistency, and quantification of posttranslational modifications. Notably, in contrast to a previously reported automated sample preparation protocol that relied on customized accessories, all components in our automation procedure are commercial products that are readily available. In addition, we also present the high-throughput data analysis workflow by using Protein Metrics. The automation procedure can be applied cross-functionally in the biopharmaceutical industry and, given its practicality and reproducibility, can pave the way for MAM implementation in QC laboratories.


Assuntos
Procedimentos Cirúrgicos Robóticos , Automação , Cromatografia Líquida , Espectrometria de Massas , Mapeamento de Peptídeos , Reprodutibilidade dos Testes
2.
MAbs ; 10(3): 416-430, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29400603

RESUMO

The conserved glycosylation site Asn297 of a monoclonal antibody (mAb) can be decorated with a variety of sugars that can alter mAb pharmacokinetics and recruitment of effector proteins. Antibodies lacking the core fucose at Asn297 (afucosylated mAbs) show enhanced antibody-dependent cell-mediated cytotoxicity (ADCC) and increased efficacy. Here, we describe the development of a robust platform for the manufacture of afucosylated therapeutic mAbs by engineering a Chinese hamster ovary (CHO) host cell line to co-express a mAb with GDP-6-deoxy-D-lyxo-4-hexulose reductase (RMD), a prokaryotic enzyme that deflects an intermediate in the de novo synthesis of fucose to a dead-end product, resulting in the production of afucosylated mAb (GlymaxX™ Technology, ProBioGen). Expression of the mAb and RMD genes was coordinated by co-transfection of separate mAb and RMD vectors or use of an internal ribosome entry site (IRES) element to link the translation of RMD with either the glutamine synthase selection marker or the mAb light chain. The GS-IRES-RMD vector format was more suitable for the rapid generation of high yielding cell lines, secreting afucosylated mAb with titers exceeding 6.0 g/L. These cell lines maintained production of afucosylated mAb over 60 generations, ensuring their suitability for use in large-scale manufacturing. The afucosylated mAbs purified from these RMD-engineered cell lines showed increased binding in a CD16 cellular assay, demonstrating enhancement of ADCC compared to fucosylated control mAb. Furthermore, the afucosylation in these mAbs could be controlled by simple addition of L-fucose in the culture medium, thereby allowing the use of a single cell line for production of the same mAb in fucosylated and afucosylated formats for multiple therapeutic indications.


Assuntos
Anticorpos Monoclonais , Fucose/metabolismo , Expressão Gênica , Genes , Vetores Genéticos/genética , Proteínas Recombinantes de Fusão , Animais , Anticorpos Monoclonais/biossíntese , Anticorpos Monoclonais/genética , Células CHO , Cricetulus , Fucose/genética , Glicosilação , Proteínas Recombinantes de Fusão/biossíntese , Proteínas Recombinantes de Fusão/genética
3.
MAbs ; 9(7): 1186-1196, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28805536

RESUMO

During manufacturing and storage process, therapeutic proteins are subject to various post-translational modifications (PTMs), such as isomerization, deamidation, oxidation, disulfide bond modifications and glycosylation. Certain PTMs may affect bioactivity, stability or pharmacokinetics and pharmacodynamics profile and are therefore classified as potential critical quality attributes (pCQAs). Identifying, monitoring and controlling these PTMs are usually key elements of the Quality by Design (QbD) approach. Traditionally, multiple analytical methods are utilized for these purposes, which is time consuming and costly. In recent years, multi-attribute monitoring methods have been developed in the biopharmaceutical industry. However, these methods combine high-end mass spectrometry with complicated data analysis software, which could pose difficulty when implementing in a quality control (QC) environment. Here we report a multi-attribute method (MAM) using a Quadrupole Dalton (QDa) mass detector to selectively monitor and quantitate PTMs in a therapeutic monoclonal antibody. The result output from the QDa-based MAM is straightforward and automatic. Evaluation results indicate this method provides comparable results to the traditional assays. To ensure future application in the QC environment, this method was qualified according to the International Conference on Harmonization (ICH) guideline and applied in the characterization of drug substance and stability samples. The QDa-based MAM is shown to be an extremely useful tool for product and process characterization studies that facilitates facile understanding of process impact on multiple quality attributes, while being QC friendly and cost-effective.


Assuntos
Anticorpos Monoclonais/química , Controle de Qualidade , Espectrometria de Massas por Ionização por Electrospray/métodos , Humanos , Mapeamento de Peptídeos/métodos , Processamento de Proteína Pós-Traducional
4.
ACS Synth Biol ; 6(7): 1370-1379, 2017 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-28350472

RESUMO

Chinese Hamster Ovary (CHO) cells are routinely optimized to stably express monoclonal antibodies (mAbs) at high titers. At the early stages of lead isolation and optimization, hundreds of sequences for the target protein of interest are screened. Typically, cell-based transient expression technology platforms are used for expression screening, but these can be time- and resource-intensive. Here, we have developed a cell-free protein synthesis (CFPS) platform utilizing a commercially available CHO extract for the rapid in vitro synthesis of active, aglycosylated mAbs. Specifically, we optimized reaction conditions to maximize protein yields, established an oxidizing environment to enable disulfide bond formation, and demonstrated the importance of temporal addition of heavy chain and light chain plasmids for intact mAb production. Using our optimized platform, we demonstrate for the first time to our knowledge the cell-free synthesis of biologically active, intact mAb at >100 mg/L using a eukaryotic-based extract. We then explored the utility of our system as a tool for ranking yields of candidate antibodies. Unlike stable or transient transfection-based screening, which requires a minimum of 7 days for setup and execution, results using our CHO-based CFPS platform are attained within 2 days and it is well-suited for automation. Further development would provide a tool for rapid, high-throughput prediction of mAb expression ranking to accelerate design-build-test cycles required for antibody expression and engineering. Looking forward, the CHO-based CFPS platform could facilitate the synthesis of toxic proteins as well.


Assuntos
Anticorpos Monoclonais/biossíntese , Anticorpos Monoclonais/metabolismo , Animais , Biotecnologia/métodos , Células CHO , Sistema Livre de Células , Cricetulus , Biossíntese de Proteínas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA