Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Cancers (Basel) ; 13(12)2021 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-34201040

RESUMO

Breast cancer metastasis is the most common cause of cancer death in women worldwide. Triple-negative breast cancers (TNBC) form a heterogeneous group of tumors that have higher relapse rates and poorer survival compared to other breast cancer subtypes. Thus, this work reports the antitumor and antimetastatic activities of a [6]-gingerol-derived semi-synthetic compound named SSi6 on MDA-MB-231 TNBC cells using xenograft models. SSi6 did not cause toxic effects in vivo as demonstrated by body weight and hematological and histological evaluations. From the orthotopic xenograft model, we demonstrated that SSi6 slows and inhibits the growth of the primary tumor, as well as prevents metastatic spontaneous progression from lymph nodes to the lungs. Moreover, a second xenograft model with resection of the primary tumor showed that SSi6 also blocks the progression of metastases from the lymph nodes to other visceral organs. Taken together, our results demonstrate that SSi6 is a promising compound to be investigated in other preclinical and clinical models to be applied as a complementary therapy for TNBC.

2.
Nat Commun ; 10(1): 5011, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31676791

RESUMO

Upregulation of fatty acid synthase (FASN) is a common event in cancer, although its mechanistic and potential therapeutic roles are not completely understood. In this study, we establish a key role of FASN during transformation. FASN is required for eliciting the anaplerotic shift of the Krebs cycle observed in cancer cells. However, its main role is to consume acetyl-CoA, which unlocks isocitrate dehydrogenase (IDH)-dependent reductive carboxylation, producing the reductive power necessary to quench reactive oxygen species (ROS) originated during the switch from two-dimensional (2D) to three-dimensional (3D) growth (a necessary hallmark of cancer). Upregulation of FASN elicits the 2D-to-3D switch; however, FASN's synthetic product palmitate is dispensable for this process since cells satisfy their fatty acid requirements from the media. In vivo, genetic deletion or pharmacologic inhibition of FASN before oncogenic activation prevents tumor development and invasive growth. These results render FASN as a potential target for cancer prevention studies.


Assuntos
Células-Tronco Embrionárias/metabolismo , Ácido Graxo Sintases/metabolismo , Ácidos Graxos/metabolismo , Fibroblastos/metabolismo , Neoplasias Experimentais/metabolismo , Animais , Linhagem Celular , Células Cultivadas , Embrião de Mamíferos/citologia , Células-Tronco Embrionárias/citologia , Ácido Graxo Sintases/química , Ácido Graxo Sintases/genética , Feminino , Fibroblastos/citologia , Células HEK293 , Humanos , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Nus , Camundongos Transgênicos , Neoplasias Experimentais/genética , Neoplasias Experimentais/patologia , Carga Tumoral/genética
3.
Nat Commun ; 9(1): 3501, 2018 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-30158526

RESUMO

Triple-negative breast cancer (TNBC) lacks prognostic and predictive markers. Here, we use high-throughput phosphoproteomics to build a functional TNBC taxonomy. A cluster of 159 phosphosites is upregulated in relapsed cases of a training set (n = 34 patients), with 11 hyperactive kinases accounting for this phosphoprofile. A mass-spectrometry-to-immunohistochemistry translation step, assessing 2 independent validation sets, reveals 6 kinases with preserved independent prognostic value. The kinases split the validation set into two patterns: one without hyperactive kinases being associated with a >90% relapse-free rate, and the other one showing ≥1 hyperactive kinase and being associated with an up to 9.5-fold higher relapse risk. Each kinase pattern encompasses different mutational patterns, simplifying mutation-based taxonomy. Drug regimens designed based on these 6 kinases show promising antitumour activity in TNBC cell lines and patient-derived xenografts. In summary, the present study elucidates phosphosites and kinases implicated in TNBC and suggests a target-based clinical classification system for TNBC.


Assuntos
Fosfoproteínas/metabolismo , Fosfotransferases/metabolismo , Neoplasias de Mama Triplo Negativas/metabolismo , Linhagem Celular Tumoral , Feminino , Humanos , Imuno-Histoquímica , Estimativa de Kaplan-Meier , Espectrometria de Massas , Resultado do Tratamento , Neoplasias de Mama Triplo Negativas/mortalidade
4.
Cell Rep ; 15(12): 2705-18, 2016 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-27292634

RESUMO

Epithelial malignancies are effectively treated by antiangiogenics; however, acquired resistance is a major problem in cancer therapeutics. Epithelial tumors commonly have mutations in the MAPK/Pi3K-AKT pathways, which leads to high-rate aerobic glycolysis. Here, we show how multikinase inhibitor antiangiogenics (TKIs) induce hypoxia correction in spontaneous breast and lung tumor models. When this happens, the tumors downregulate glycolysis and switch to long-term reliance on mitochondrial respiration. A transcriptomic, metabolomic, and phosphoproteomic study revealed that this metabolic switch is mediated by downregulation of HIF1α and AKT and upregulation of AMPK, allowing uptake and degradation of fatty acids and ketone bodies. The switch renders mitochondrial respiration necessary for tumor survival. Agents like phenformin or ME344 induce synergistic tumor control when combined with TKIs, leading to metabolic synthetic lethality. Our study uncovers mechanistic insights in the process of tumor resistance to TKIs and may have clinical applicability.


Assuntos
Inibidores da Angiogênese/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Mitocôndrias/metabolismo , Neoplasias/metabolismo , Animais , Proliferação de Células/efeitos dos fármacos , Respiração Celular/efeitos dos fármacos , Reprogramação Celular/efeitos dos fármacos , Modelos Animais de Doenças , Regulação para Baixo/efeitos dos fármacos , Ácidos Graxos/metabolismo , Feminino , Glucose/metabolismo , Glicólise/efeitos dos fármacos , Humanos , Corpos Cetônicos/metabolismo , Metaboloma/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Camundongos Nus , Mitocôndrias/efeitos dos fármacos , Mitofagia/efeitos dos fármacos , Neoplasias/patologia , Oxigênio/metabolismo , Compostos de Fenilureia/farmacologia , Fosfoproteínas/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Piridinas/farmacologia , Transdução de Sinais/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA