Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 207
Filtrar
1.
Phytomedicine ; 135: 156064, 2024 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-39306885

RESUMO

BACKGROUND AND AIMS: Previous studies suggest that titanium dioxide nanoparticles (TiO2 NPs) induce liver injury, possibly due to oxidative stress and inflammation. Ellagic acid (EA) is a dietary polyphenol extracted from natural sources and possesses antioxidant and anti-inflammatory properties. Nonetheless, the efficacy of EA in mitigating liver injury induced by TiO2 NPs remains to be elucidated. METHODS: Primary hepatocytes and L02 cells were cultured with 45 µM EA and 10 µg/ml TiO2 NPs. Mice were orally administered TiO2 NPs (150 mg kg-1) and EA (25/50/100 mg kg-1) for eight weeks. sulforaphane (SFN) as a positive control to evaluate the inhibitory effect of EA on TiO2 NP-induced liver injury (SFN 10 mg kg-1). RNA sequencing (RNA-seq) was employed to elucidate the mechanisms underlying oxidative stress, inflammation, and liver fibrosis. RESULTS: We assessed the impact of EA on cytotoxicity, oxidative stress, inflammation, and fibrosis in both cells and mice exposed to TiO2 NPs for an extended period. Our findings indicated that EA had a protective effect on TiO2 NP-exposed hepatocytes, reducing cytotoxicity, oxidative stress, and inflammation. Furthermore, EA treatment markedly reduced serum aminotransferase levels in mice exposed to TiO2 NPs. Furthermore, EA treatment notably reduced hepatic stress response, inflammation, and fibrosis in mice. The treatment of EA demonstrates non-inferiority compared to SFN. The protective effects of EA were attributed to the upregulation of nuclear factor erythroid 2-related factor 2 (Nrf2), EA promoted the translocation and phosphorylation of Nrf2, as indicated by the finding that Nfe2l2 shRNA and inhibition of Nrf2 by ML385 reversed the EA-induced hepatoprotective effects in TiO2 NP-exposed hepatocytes and mice. CONCLUSION: EA significantly mitigated liver injury induced by TiO2 NPs. Importantly, we identified that the nuclear translocation and phosphorylation of Nrf2 are the primary mechanisms through which EA alleviates liver injury resulting from exposure to TiO2 NPs. As a natural activator of Nrf2, EA emerges as a promising therapeutic candidate for treating TiO2 NPs-induced liver injury, further enhancing our understanding of its potential as a hepatoprotective agent and its underlying molecular mechanisms.

2.
Front Pharmacol ; 15: 1450847, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39234106

RESUMO

Introduction: Luteolin, a natural compound commonly used in traditional Chinese medicine, shows clinical potential as an anti-liver cancer agent. The mechanisms underlying the anti-liver cancer effect of luteolin are limited versus those reported for other cancers. Accordingly, this study was conducted to bridge the existing knowledge gap. Methods: Transcriptomic and proteomic analyses of the response of the hepatocellular carcinoma cell line HuH-7 to luteolin were conducted, and a possible pathway was elucidated using confocal laser scanning microscopy (CLSM), flow cytometry, western blotting, qRT-PCR and bio-layer interferometry assay to systematically explore the possible mechanisms underlying the inhibition of the proliferation of liver cancer cells by luteolin. Results and Discussion: Results showed that luteolin significantly inhibited HuH-7 cell proliferation. Transcriptomic and proteomic analyses collectively revealed that luteolin could promote cell cycle arrest and apoptosis in HuH-7 cells through transcription factors p53, nuclear factor kappa B (NF-κB), FOXO, ATF2, and TCF/LEF via AKT1, as well as the KEAP-NRF and SRC-STAT3 pathways. Furthermore, AKT1 and SRC were identified as the 2 targets of luteolin. Nuclear translocation of transcription factors p53 and NF-κB were affected by luteolin administration. Additionally, AKT1 activity affected normal metabolism in HuH-7 cells and resulted in the accumulation of reactive oxygen species, which activated MOMP and further promoted apoptosis. Our results systematically elucidate the mechanism of luteolin in inhibiting the proliferation of liver cancer cells, mainly through cell cycle arrest and apoptosis via targeting AKT1 and SRC.

3.
Mater Adv ; 2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-39247387

RESUMO

Hierarchical linker thermolysis has been used to enhance the porosity of monolithic UiO-66-based metal-organic frameworks (MOFs) containing 30 wt% 2-aminoterephthalic acid (BDC-NH2) linker. In this multivariate (i.e. mixed-linker) MOF, the thermolabile BDC-NH2 linker decomposed at ∼350 °C, inducing mesopore formation. The nitrogen sorption of these monolithic MOFs was probed, and an increase in gas uptake of more than 200 cm3 g-1 was observed after activation by heating, together with an increase in pore volume and mean pore width, indicating the creation of mesopores. Water sorption studies were conducted on these monoliths to explore their performance in that context. Before heating, monoUiO-66-NH2-30%-B showed maximum water vapour uptake of 61.0 wt%, which exceeded that reported for either parent monolith, while the highly mesoporous monolith (monoUiO-66-NH2-30%-A) had a lower maximum water vapour uptake of 36.2 wt%. This work extends the idea of hierarchical linker thermolysis, which has been applied to powder MOFs, to monolithic MOFs for the first time and supports the theory that it can enhance pore sizes in these materials. It also demonstrates the importance of hydrophilic functional groups (in this case, NH2) for improving water uptake in materials.

4.
Chem Mater ; 36(17): 8247-8254, 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-39279904

RESUMO

Luminescent metal-organic frameworks exhibit great potential as materials for nanophotonic applications because of their programmable properties and tunable structures. In particular, luminescent guests (LG) can be hosted by metal-organic frameworks due to their porosity and guest confinement capacity, forming LG@MOF composite systems. However, such guest-host systems are mainly produced as loose powders, preventing their widespread use in practical devices and technological applications that require implementation of a stable continuum solid. In this regard, using monolithic MOF hosts might be a workable option to solve this challenge. Herein, we reported the facile synthesis and fabrication of novel prototypical sol-gel monolithic systems, designated as LG@monoMOF. Red (rhodamine B), blue (7-methoxycoumarin), and yellow (fluorescein) emitting dyes were encapsulated in a robust UiO-66 monolithic host, resulting in the red, blue, and yellow light-emitting luminescent monoliths. The mechanical and photophysical characterization of the three LG@monoMOF systems was systematically carried out in order to unravel the role of guest-host interactions in the mechanical and optical response of the bespoke LG@monoMOF composites.

5.
Chem Sci ; 15(26): 10056-10064, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38966360

RESUMO

Tribo- and contact electrification remain poorly understood, baffling and discombobulating scientists for millennia. Despite the technology needed to harvest mechanical energy with triboelectric generators being incredibly rudimentary and the fact that a triboelectric output can be obtained from almost any two material combinations, research into triboelectric generator materials typically focuses on achieving the highest possible output; meanwhile, understanding trends and triboelectric behaviours of related but lower performing materials is often overlooked or not studied. Metal-organic frameworks, a class of typically highly porous and crystalline coordination polymers are excellent media to study to fill this knowledge gap. Their chemistry, topology and morphology can be individually varied while keeping other material properties constant. Here we study 5 closely related zeolitic-imidazolate type metal-organic frameworks for their triboelectric performance and behaviour by contact-separating each one with five counter materials. We elucidate the triboelectric electron transfer behaviour of each material, develop a triboelectric series and characterise the surface potential by Kelvin-probe force microscopy. From our results we draw conclusions on how the chemistry, morphology and topology affect the triboelectric output by testing and characterising our series of frameworks to help better understand triboelectric phenomena.

6.
J Hazard Mater ; 476: 135165, 2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-38996675

RESUMO

Minimizing cadmium (Cd) contamination in rice grains is crucial for ensuring food security and promoting sustainable agriculture. Utilizing genetic modification to generate rice varieties with low Cd accumulation is a promising strategy due to its cost-effectiveness and operational simplicity. Our study demonstrated that the CRISPR-Cas9-mediated quadruple mutation of the multicopper oxidase genes OsLPR1/3/4/5 in the japonica rice cultivar Tongjing 981 had little effect on yields. However, a notable increase was observed in the cell wall functional groups that bind with Cd. As a result, the quadruple mutation of OsLPR1/3/4/5 enhanced Cd sequestration within the cell wall while reducing Cd concentrations in both xylem and phloem sap, thereby inhibiting Cd transport from roots to shoots. Consequently, Cd concentrations in brown rice and husk in oslpr1/3/4/5 quadruple mutants (qm) decreased by 52% and 55%, respectively, compared to the wild-type. These findings illustrate that the quadruple mutation of OsLPR1/3/4/5 is an effective method for minimizing Cd contamination in rice grains without compromising yields. Therefore, the quadruple mutation of OsLPR1/3/4/5 via biotechnological pathways may represent a valuable strategy for the generation of new rice varieties with low Cd accumulation.


Assuntos
Cádmio , Mutação , Oryza , Proteínas de Plantas , Oryza/genética , Oryza/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Poluentes do Solo/metabolismo , Grão Comestível , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Sistemas CRISPR-Cas , Oxirredutases/genética , Oxirredutases/metabolismo , Contaminação de Alimentos/análise
7.
Artigo em Inglês | MEDLINE | ID: mdl-38607220

RESUMO

Objective: This study aims to analyze factors contributing to recurrent respiratory tract infections (RRTIs) in pediatric patients and evaluate the efficacy of pidotimod (PI) treatment. Methods: This study utilized a retrospective cohort design, enrolling a total of 85 children diagnosed with RRTIs between September 2020 and September 2022, alongside 54 healthy children. Logistic regression analysis was employed to identify factors contributing to RRTI occurrence. Among the participants, 40 children underwent conventional treatment (control group), while 45 received PI treatment (research group). Comparative analyses were conducted to assess clinical efficacy and adverse effects between the two treatment groups. Results: The history of family members' smoking and parental allergy emerged as independent risk factors for RRTIs (P < .05, OR>1), whereas parental education level, outdoor activity, and micronutrient intake were identified as independent protective factors for RRTIs (P < .05, OR<1). Symptoms such as cough, fever, rhonchi, moist rales, and tonsillar enlargement resolved significantly faster in the research group compared to the control group (P < .05). Additionally, the research group exhibited reduced infection duration and fewer recurrent infections (P < .05). Following treatment, the overall treatment efficacy was superior in the research group compared to the control group (P < .05), with no significant difference in the incidence of adverse effects (P > .05). Post-treatment, levels of CD3+, CD4+, and CD4+/CD8+ were elevated in the research group compared to the control group, while CD8+ levels were lower (P < .05). Conclusions: Daily outdoor activity among children, family members' history of smoking, parental allergy history, education level, and micronutrient intake emerged as independent factors influencing pediatric RRTIs. Furthermore, PI was identified as a significant treatment option for RRTIs.

8.
J Exp Bot ; 75(10): 3188-3200, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38401150

RESUMO

The rhizotoxicity of protons (H+) in acidic soils is a fundamental constraint that results in serious yield losses. However, the mechanisms underlying H+-mediated inhibition of root growth are poorly understood. In this study, we revealed that H+-induced root growth inhibition in Arabidopsis depends considerably on excessive iron deposition in the root apoplast. Reducing such aberrant iron deposition by decreasing the iron supply or disrupting the ferroxidases LOW PHOSPHATE ROOT 1 (LPR) and LPR2 attenuates the inhibitory effect of H+ on primary root growth efficiently. Further analysis showed that excessive iron deposition triggers a burst of highly reactive oxygen species, consequently impairing normal root development. Our study uncovered a valuable strategy for improving the ability of plants to tolerate H+ toxicity by manipulating iron availability.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Ferro , Raízes de Plantas , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Ferro/metabolismo , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Concentração de Íons de Hidrogênio , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Espécies Reativas de Oxigênio/metabolismo
9.
Drug Des Devel Ther ; 18: 133-159, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38283137

RESUMO

Purpose: Alzheimer's disease (AD) is the most common neurodegenerative disease, and its multifactorial nature increases the difficulty of medical research. To explore an effective treatment for AD, a series of novel tacrine-selegiline hybrids with ChEs and MAOs inhibitory activities were designed and synthesized as multifunctional drugs. Methods: All designed compounds were evaluated in vitro for their inhibition of cholinesterases (AChE/BuChE) and monoamine oxidases (MAO-A/B) along with their blood-brain barrier permeability. Then, further biological activities of the optimizing compound 7d were determined, including molecular model analysis, in vitro cytotoxicity, acute toxicity studies in vivo, and pharmacokinetic and pharmacodynamic property studies in vivo. Results: Most synthesized compounds demonstrated potent inhibitory activity against ChEs/MAOs. Particularly, compound 7d exhibited good and well-balanced activity against ChEs (hAChE: IC50 = 1.57 µM, hBuChE: IC50 = 0.43 µM) and MAOs (hMAO-A: IC50 = 2.30 µM, hMAO-B: IC50 = 4.75 µM). Molecular modeling analysis demonstrated that 7d could interact simultaneously with both the catalytic active site (CAS) and peripheral anionic site (PAS) of AChE in a mixed-type manner and also exhibits binding affinity towards BuChE and MAO-B. Additionally, 7d displayed excellent permeability of the blood-brain barrier, and under the experimental conditions, it elicited low or no toxicity toward PC12 and BV-2 cells. Furthermore, 7d was not acutely toxic in mice at doses up to 2500 mg/kg and could improve the cognitive function of mice with scopolamine-induced memory impairment. Lastly, 7d possessed well pharmacokinetic characteristics. Conclusion: In light of these results, it is clear that 7d could potentially serve as a promising multi-functional drug for the treatment of AD.


Assuntos
Doença de Alzheimer , Doenças Neurodegenerativas , Taurina/análogos & derivados , Camundongos , Animais , Tacrina/farmacologia , Tacrina/química , Tacrina/uso terapêutico , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Colinesterases/metabolismo , Selegilina/farmacologia , Selegilina/uso terapêutico , Monoaminoxidase/metabolismo , Inibidores da Colinesterase/farmacologia , Inibidores da Colinesterase/química , Doenças Neurodegenerativas/tratamento farmacológico , Inibidores da Monoaminoxidase/farmacologia , Inibidores da Monoaminoxidase/química , Acetilcolinesterase/metabolismo , Desenho de Fármacos , Relação Estrutura-Atividade , Peptídeos beta-Amiloides
10.
Small ; 20(3): e2302014, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37698252

RESUMO

On-demand uranium extraction from seawater (UES) can mitigate growing sustainable energy needs, while high salinity and low concentration hinder its recovery. A novel anionic metal-organic framework (iMOF-1A) is demonstrated adorned with rare Lewis basic pyrazinic sites as uranyl-specific nanotrap serving as robust ion exchange material for selective uranium extraction, rendering its intrinsic ionic characteristics to minimize leaching. Ionic adsorbents sequestrate 99.8% of the uranium in 120 mins (from 20,000 ppb to 24 ppb) and adsorb large amounts of 1336.8 mg g-1 and 625.6 mg g-1 from uranium-spiked deionized water and artificial seawater, respectively, with high distribution coefficient, Kd U ≥ 0.97 × 106  mL g-1 . The material offers a very high enrichment index of ≈5754 and it achieves the UES standard of 6.0 mg g-1 in 16 days, and harvests 9.42 mg g-1 in 30 days from natural seawater. Isothermal titration calorimetry (ITC) studies quantify thermodynamic parameters, previously uncharted in uranium sorption experiments. Infrared nearfield nanospectroscopy (nano-FTIR) and tip-force microscopy (TFM) enable chemical and mechanical elucidation of host-guest interaction at atomic level in sub-micron crystals revealing extant capture events throughout the crystal rather than surface solely. Comprehensive experimentally guided computational studies reveal ultrahigh-selectivity for uranium from seawater, marking mechanistic insight.

11.
Adv Sci (Weinh) ; 11(4): e2305070, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38032122

RESUMO

Despite exhaled human breath having enabled noninvasive diabetes diagnosis, selective acetone vapor detection by fluorescence approach in the diabetic range (1.8-3.5 ppm) remains a long-standing challenge. A set of water-resistant luminescent metal-organic framework (MOF)-based composites have been reported for detecting acetone vapor in the diabetic range with a limit of detection of 200 ppb. The luminescent materials possess the ability to selectively detect acetone vapor from a mixture comprising nitrogen, oxygen, carbon dioxide, water vapor, and alcohol vapor, which are prevalent in exhaled breath. It is noteworthy that this is the first luminescent MOF material capable of selectively detecting acetone vapor in the diabetic range via a turn-on mechanism. The material can be reused within a matter of minutes under ambient conditions. Industrially pertinent electrospun luminescent fibers are likewise fabricated alongside various luminescent films for selective detection of ultratrace quantities of acetone vapor present in the air. Ab initio theoretical calculations combined with in situ synchrotron-based dosing studies uncovered the material's remarkable hypersensitivity toward acetone vapor. Finally, a freshly designed prototype fluorescence-based portable optical sensor is utilized as a proof-of-concept for the rapid detection of acetone vapor within the diabetic range.

12.
Environ Pollut ; 342: 123137, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38097157

RESUMO

Sediment cores are optimal mediums for investigating the historical presence of offshore microplastics (MPs). In this study, two sediment cores were collected at varying water depths, i.e., XS2 (10 m) and XS3 (20 m), from the Xiangshan offshore (XSO) in Ningbo. We focused on the spatiotemporal distribution characteristics of MPs within two sediment cores and explored the response differences of MPs abundance to natural factors and human activities. The results showed that the MPs abundance in sediments has gradually increased since the late 1960s, but with interannual fluctuations. MPs abundance in XS2 and XS3 were 1133-8700 and 633-11433 items/kg dry weight, respectively. The predominant polymers were PA, PU, PET and ACR, with fragmented particles being the most prevalent shape of MPs. The MPs abundance in XS2 and XS3 had a similar response to natural factors, mainly including (i) MPs abundance significantly correlated with the sediment load of the Qiantang River (p < 0.01), indicating that sediment load might be an important factor affecting the MPs abundance and that MPs transported by rivers had characteristics of near-source sedimentation; (ii) typhoons had the effect of weakening the MPs abundance; and (iii) geological activities might be potential contributing factors to variations in MPs' abundance in deep sediments. Correlation analyses demonstrated that MPs in XSO was the result of multiple sources, stemming from plastic production, sewage discharge, marine fisheries and shipping activities. Notably, XS3 exhibited higher sensitivity to human activities compared to XS2, owing to differences in sampling locations. This study underscores the significance of employing two sediment cores, rather than a single core, as it provides a more comprehensive insight into the overarching trends and disparities in the historical pollution of MPs. Our findings contribute to a deeper understanding of the history of offshore MPs pollution, shedding new light on this critical environmental issue.


Assuntos
Líquidos Corporais , Poluentes Químicos da Água , Humanos , Microplásticos , Plásticos , China , Transporte Biológico , Monitoramento Ambiental , Sedimentos Geológicos
13.
Adv Mater ; 35(44): e2306521, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37643739

RESUMO

Compressibility is a fundamental property of all materials. For fluids, that is, gases and liquids, compressibility forms the basis of technologies such as pneumatics and hydraulics and determines basic phenomena such as the propagation of sound and shock waves. In contrast to gases, liquids are almost incompressible. If the compressibility of liquids could be increased and controlled, new applications in hydraulics and shock absorption could result. Here, it is shown that dispersing hydrophobic porous particles into water gives aqueous suspensions with much greater compressibilities than any normal liquids such as water (specifically, up to 20 times greater over certain pressure ranges). The increased compressibility results from water molecules being forced into the hydrophobic pores of the particles under applied pressure. The degree of compression can be controlled by varying the amount of porous particles added. Also, the pressure range of compression can be reduced by adding methanol or increased by adding salt. In all cases, the liquids expand back to their original volume when the applied pressure is released. The approach shown here is simple and economical and could potentially be scaled up to give large amounts of highly compressible liquids.

14.
J Control Release ; 361: 102-114, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37532150

RESUMO

Percutaneous microwave ablation (PMA) is a thermoablative method used as a minimally invasive treatment for liver cancer. However, the application of PMA is limited by its insufficient ROS generation efficiency and thermal effects. Herein, a new microwave-activated Cu-doped zirconium metal-organic framework (MOF) (CuZr MOF) used for enhanced PMA has a significantly improved microwave sensitizing effect. Owing to the strong inelastic collisions between ions confined in numerous micropores, CuZr MOF has strong microwave sensitivity and high thermal conversion efficiency, which can significantly improve microwave thermal therapy (MTT). Moreover, because of the existence of Cu2+ ions, a further benefit of CuZr MOF is their Fenton-like activity, in particular, microwaves used as an excitation source for microwave dynamic therapy (MDT) can improve the Fenton-like reaction to maximize the synergistic effectiveness of cancer therapy. Importantly, CuZr MOF can inhibit the production of heat shock proteins (HSPs) by producing abundant ROS to enhance tumor destruction. Mechanistically, we found that CuZr MOF + MW treatment modulates ferroptosis-mediated tumor cell death by targeting the HMOX1/GPX4 axis. In summary, this study develops a novel CuZr MOF microwave sensitizer with great potential for synergistic treatment of liver cancer by MTT and MDT.


Assuntos
Neoplasias Hepáticas , Estruturas Metalorgânicas , Humanos , Micro-Ondas , Zircônio , Espécies Reativas de Oxigênio/metabolismo
15.
Bioinformatics ; 39(8)2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37498558

RESUMO

MOTIVATION: Single-cell RNA-sequencing (scRNA-seq) has enabled the molecular profiling of thousands to millions of cells simultaneously in biologically heterogenous samples. Currently, the common practice in scRNA-seq is to determine cell type labels through unsupervised clustering and the examination of cluster-specific genes. However, even small differences in analysis and parameter choosing can greatly alter clustering results and thus impose great influence on which cell types are identified. Existing methods largely focus on determining the optimal number of robust clusters, which can be problematic for identifying cells of extremely low abundance due to their subtle contributions toward overall patterns of gene expression. RESULTS: Here, we present a carefully designed framework, SCISSORS, which accurately profiles subclusters within broad cluster(s) for the identification of rare cell types in scRNA-seq data. SCISSORS employs silhouette scoring for the estimation of heterogeneity of clusters and reveals rare cells in heterogenous clusters by a multi-step semi-supervised reclustering process. Additionally, SCISSORS provides a method for the identification of marker genes of high specificity to the cell type. SCISSORS is wrapped around the popular Seurat R package and can be easily integrated into existing Seurat pipelines. AVAILABILITY AND IMPLEMENTATION: SCISSORS, including source code and vignettes, are freely available at https://github.com/jr-leary7/SCISSORS.


Assuntos
Algoritmos , Perfilação da Expressão Gênica , Perfilação da Expressão Gênica/métodos , Análise de Sequência de RNA/métodos , Análise de Célula Única/métodos , Análise por Conglomerados , RNA
16.
Front Immunol ; 14: 1163967, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37325670

RESUMO

Advanced hepatocellular carcinoma (HCC) is a formidable public health problem with limited curable treatment options. Axitinib, an oral tyrosine kinase inhibitor, is a potent and selective second-generation inhibitor of vascular endothelial growth factor receptor (VEGFR) 1, 2, and 3. This anti-angiogenic drug was found to have promising activity in various solid tumors, including advanced HCC. At present, however, there is no relevant review article that summarizes the exact roles of axitinib in advanced HCC. In this review, 24 eligible studies (seven studies in the ClinicalTrials, eight experimental studies, and nine clinical trials) were included for further evaluation. The included randomized or single-arm phase II trials indicated that axitinib could not prolong the overall survival compared to the placebo for the treatment of advanced HCC, but improvements in progression free survival and time to tumor progression were observed. Experimental studies showed that the biochemical effects of axitinib in HCC might be regulated by its associated genes and affected signaling cascades (e.g. VEGFR2/PAK1, CYP1A2, CaMKII/ERK, Akt/mTor, and miR-509-3p/PDGFRA). FDA approved sorafenib combined with nivolumab (an inhibitor of PD-1/PD-L1) as the first line regimen for the treatment of advanced HCC. Since both axitinib and sorafenib are tyrosine kinase inhibitors as well as the VEGFR inhibitors, axitinib combined with anti-PDL-1/PD-1 antibodies may also exhibit tremendous potential in anti-tumoral effects for advanced HCC. The present review highlights the current clinical applications and the molecular mechanisms of axitinib in advanced HCC. To move toward clinical applications by combining axitinib and other treatments in advanced HCC, more studies are still warranted in the near future.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Axitinibe/uso terapêutico , Carcinoma Hepatocelular/patologia , Sorafenibe/uso terapêutico , Fator A de Crescimento do Endotélio Vascular , Receptor de Morte Celular Programada 1 , Indazóis/farmacologia , Neoplasias Hepáticas/patologia , Imidazóis/farmacologia
17.
Catal Sci Technol ; 13(12): 3551-3557, 2023 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-37342794

RESUMO

We report here the synthesis of polyureas from the dehydrogenative coupling of diamines and diformamides. The reaction is catalysed by a manganese pincer complex and releases H2 gas as the only by-product making the process atom-economic and sustainable. The reported method is greener in comparison to the current state-of-the-art production routes that involve diisocyanate and phosgene feedstock. We also report here the physical, morphological, and mechanical properties of synthesized polyureas. Based on our mechanistic studies, we suggest that the reaction proceeds via isocyanate intermediates formed by the manganese catalysed dehydrogenation of formamides.

18.
Cancer Med ; 12(13): 14413-14425, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37212524

RESUMO

BACKGROUND: Liver cancer is a highly malignant disease and the third leading cause of cancer death worldwide. Abnormal activation of PI3K/Akt signaling is common in cancer, but whether phosphoinositide-3-kinase regulatory subunit 3 (PIK3R3) plays a role in liver cancer is largely unexplored. METHODS: We determined the expression of PIK3R3 in liver cancer by using TCGA data and our clinical samples and knocked it down by siRNA or overexpressing it by the lentivirus vector system. We also investigated the function of PIK3R3 by colony formation, 5-Ethynyl-2-Deoxyuridine, flow cytometry assay, and subcutaneous xenograft model. The downstream of PIK3R3 was explored by RNA sequence and rescue assays. RESULTS: We found that PIK3R3 was significantly upregulated in liver cancer and correlated with prognosis. PIK3R3 promoted liver cancer growth in vitro and in vivo by controlling cell proliferation and cell cycle. RNA sequence revealed that hundreds of genes were dysregulated upon PIK3R3 knockdown in liver cancer cells. CDKN1C, a cyclin-dependent kinase inhibitor, was significantly upregulated by PIK3R3 knockdown, and CDKN1C siRNA rescued the impaired tumor cell growth. SMC1A was partially responsible for PIK3R3 regulated function, and SMC1A overexpression rescued the impaired tumor cell growth in liver cancer cells. Immunoprecipitation demonstrated there is indirect interaction between PIK3R3 and CNKN1C or SMC1A. Importantly, we verified that PIK3R3-activated Akt signaling determined the expression of CDKN1C and SMC1A, two downstream of PIK3R3 in liver cancer cells. CONCLUSION: PIK3R3 is upregulated in liver cancer and activates Akt signaling to control cancer growth by regulation of CDNK1C and SMC1A. Targeting PIK3R3 could be a promising treatment strategy for liver cancer that deserves further investigation.


Assuntos
Neoplasias Hepáticas , Proteínas Proto-Oncogênicas c-akt , Humanos , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Inibidor de Quinase Dependente de Ciclina p57/genética , Inibidor de Quinase Dependente de Ciclina p57/metabolismo , Regulação Neoplásica da Expressão Gênica , Neoplasias Hepáticas/genética , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA Interferente Pequeno
19.
Trends Plant Sci ; 28(8): 941-954, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37019715

RESUMO

Iron (Fe) is an essential micronutrient for plants, and its storage in the apoplast represents an important Fe pool. Plants have developed various strategies to reutilize this apoplastic Fe pool to adapt to Fe deficiency. In addition, growing evidence indicates that the dynamic changes in apoplastic Fe are critical for plant adaptation to other stresses, including ammonium stress, phosphate deficiency, and pathogen attack. In this review, we discuss and scrutinize the relevance of apoplastic Fe for plant behavior changes in response to stress cues. We mainly focus on the relevant components that modulate the actions and downstream events of apoplastic Fe in stress signaling networks.


Assuntos
Ferro , Plantas , Ferro/metabolismo , Plantas/metabolismo , Raízes de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas
20.
Commun Chem ; 6(1): 63, 2023 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-37016101

RESUMO

Understanding of the complex mechanical behavior of metal-organic frameworks (MOF) beyond their elastic limit will allow the design of real-world applications in chemical engineering, optoelectronics, energy conversion apparatus, and sensing devices. Through in situ compression of micropillars, the uniaxial stress-strain curves of a copper paddlewheel MOF (HKUST-1) were determined along two unique crystallographic directions, namely the (100) and (111) facets. We show strongly anisotropic elastic response where the ratio of the Young's moduli are E(111) ≈ 3.6 × E(100), followed by extensive plastic flows. Likewise, the yield strengths are considerably different, in which Y(111) ≈ 2 × Y(100) because of the underlying framework anisotropy. We measure the fracture toughness using micropillar splitting. While in situ tests revealed differential cracking behavior, the resultant toughness values of the two facets are comparable, yielding Kc ~ 0.5 MPa[Formula: see text]. This work provides insights of porous framework ductility at the micron scale under compression and failure by bonds breakage.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA