Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 94
Filtrar
1.
Insects ; 15(7)2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-39057237

RESUMO

Leptotrombidium imphalum is a species of chigger mites, and it can serve as a transmitting vector of scrub typhus. Southwest China is an important focus of scrub typhus. Based on the field investigation in southwest China from 2001 to 2022, this article presents the first report on the distribution and infestation of L. imphalum on rodents and other sympatric small mammals in the region. A total of 2161 L. imphalum were identified from 218 small mammal hosts in 21 of 114 survey sites. The 17 host species of L. imphalum crossed 13 genera and 5 families in 3 orders (Rodentia, Eulipotyphla, and Scandentia), indicating the low host specificity of the mite. The Asian house rat (Rattus tanezumi) was the dominant host species in the 21 sites where L. imphalum were collected, and 49.38% of mites were found on R. tanezumi. Different small mammals had different susceptibility to the infestation of L. imphalum. The prevalence (PM = 27.66%), infestation mean abundance (MA = 6 mites/per examined host), and mean intensity (MI = 21.69 mites/per infested host) for L. imphalum on the shrew gymnure (Neotetracus sinensis) were much higher than those on other host species (p < 0.05), indicating N. sinensis had a high susceptibility to the infestation of L. imphalum. The infestation indices for L. imphalum on small mammal hosts varied along different altitude and latitude gradients (p < 0.05), indicating the environmental heterogeneity of the mite infestation. Leptotrombidium imphalum exhibited an aggregated distribution among different individuals of its hosts. Besides the low host specificity of L. imphalum, the prevalence of the mite was positively correlated with the occurrence of scrub typhus, indicating the potential risk of the mite.

2.
Toxicol Appl Pharmacol ; 484: 116877, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38431228

RESUMO

Breast cancer, the most common cancer, presents a significant challenge to the health and longevity of women. Aspongopus chinensis Dallas is an insect with known anti-breast cancer properties. However, the anti-breast cancer effects and underlying mechanisms have not been elucidated. Exogenous microRNAs (miRNAs), which are derived from plants and animals, have been revealed to have notable capacities for controlling the proliferation of cancerous cells. To elucidate the inhibitory effects of miRNAs derived from A. chinensis and the regulatory mechanism involved in the growth of breast cancer cells, miRNA sequencing was initially employed to screen for miRNAs both in A. chinensis hemolymph and decoction and in mouse serum and tumor tissue after decoction gavage. Subsequently, the experiments were performed to assess the suppressive effect of ach-miR-276a-3p, the miRNA screened out from a previous study, on the proliferation of MDA-MB-231 and MDA-MB-468 breast cancer cell lines in vitro and in vivo. Finally, the regulatory mechanism of ach-miR-276a-3p in MDA-MB-231 and MDA-MB-468 breast cancer cells was elucidated. The results demonstrated that ach-miR-276a-3p notably inhibited breast cancer cell proliferation, migration, colony formation, and invasion and induced cell cycle arrest at the G0/G1 phase. Moreover, the ach-miR-276a-3p mimics significantly reduced the tumor volume and weight in xenograft tumor mice. Furthermore, ach-miR-276a-3p could induce cell cycle arrest by targeting APPL2 and regulating the CDK2-Rb-E2F1 signaling pathway. In summary, ach-miR-276a-3p, derived from A. chinensis, has anti-breast cancer activity by targeting APPL2 and regulating the CDK2-Rb-E2F1 signaling pathway and can serve as a promising candidate anticancer agent.


Assuntos
Neoplasias da Mama , MicroRNAs , Humanos , Feminino , Animais , Camundongos , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , MicroRNAs/genética , MicroRNAs/metabolismo , Pontos de Checagem do Ciclo Celular , Transdução de Sinais , Regulação Neoplásica da Expressão Gênica , Quinase 2 Dependente de Ciclina/genética , Fator de Transcrição E2F1/genética , Fator de Transcrição E2F1/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo
3.
Heliyon ; 10(6): e27525, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38500987

RESUMO

Aspongopus chinensis Dallas is a traditional Chinese medicinal insect with several anticancer properties can inhibit cancer cell growth, by inhibiting cell division, autophagy and cell cycle. However, the precise therapeutics effects and mechanisms of this insect on liver cancer are still unknown. This study examined the inhibitory influence of A. chinensis on the proliferation of hepatocellular carcinoma (HCC) cells and explore the underlying mechanism using high-throughput sequencing. The results showed that A. chinensis substantially reduced the viability of Hep G2 cells. A total of 33 miRNAs were found to be upregulated, while 43 miRNAs were downregulated. Additionally, 754 mRNAs were upregulated and 863 mRNAs were downregulated. Significant enrichment of differentially expressed genes was observed in signaling pathways related to tumor cell growth, cell cycle regulation, and apoptosis. Differentially expressed miRNAs exhibited a targeting relationship with various target genes, including ARC, HSPA6, C11orf86, and others. Hence, cell cycle and apoptosis were identified by flow cytometry. These findings indicate that A. chinensis impeded cell cycle advancement, halted the cell cycle in the G0/G1 and S stages, and stimulated apoptosis. Finally, mouse experiments confirmed that A. chinensis significantly inhibits tumor growth in vivo. Therefore, our findings indicate that A. chinensis has a notable suppressive impact on the proliferation of HCC cells. The potential mechanism of action could involve the regulation of mRNA expression via miRNA, ultimately leading to cell cycle arrest and apoptosis. The results offer a scientific foundation for the advancement and application of A. chinensis in the management of HCC.

4.
Zootaxa ; 5399(3): 231-240, 2024 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-38221160

RESUMO

Three new water mite species of the genus Lebertia Neuman, 1880Lebertia (Lebertia) gimina sp. nov., Lebertia (Mixolebertia) dinghuensis sp. nov. and Lebertia (Mixolebertia) wuyiensis sp. nov.are described from China, along with one new Chinese recordLebertia (Lebertia) ignatowi Sokolow, 1930. The key characteristics for the subgenera of Lebertia are given.


Assuntos
Ácaros , Animais , Água , China
5.
Artigo em Inglês | MEDLINE | ID: mdl-38266956

RESUMO

Ion transport peptide (ITP), a superfamily of arthropod neuropeptides, serves a crucial role in regulating various physiological processes such as diuresis, ecdysis behavior, and wing expansion. However, the molecular characteristics, expression profile, and role of ITP in Sogatella furcifera are poorly understood. To elucidate the characteristics and biological function of ITP in S. furcifera, we employed reverse transcription-polymerase chain reaction (RT-PCR) and RNA interference (RNAi) methods. The identified SfITP gene encodes 117 amino acids. The expression of SfITP gradually increased followed the formation of 3-day-old of 5th instar nymph, peaking initially at 40 min after eclosion, and reaching another peak 24 h after eclosion, with particularly high expression levels in thorax and wing tissues. Notably, SfITP RNAi in 3rd instar nymphs of S. furcifera significantly inhibited the transcript levels of SfITP, resulting in 55% mortality and 78% wing deformity. These findings suggests that SfITP is involved in the regulation of wing expansion in S. furcifera, providing insights into the regulation of insect wing expansion and contributing to the molecular understanding of this process.


Assuntos
Hemípteros , Neuropeptídeos , Animais , Hemípteros/genética , Hemípteros/metabolismo , Metamorfose Biológica , Muda/genética , Neuropeptídeos/metabolismo
6.
Ecotoxicol Environ Saf ; 269: 115821, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38091670

RESUMO

Black soldier fly larvae (BSFL), Hermetia illucens L., are widely used to reduce the mass of various wastes. However, the potential metal tolerance mechanisms during periods of waste bioconversion by BSFL remain largely unknown. To further reveal the mechanisms, BSFL were used to treat the agricultural organic wastes, including pig manure (PM), cow manure (COM), spent mushroom substrate (SMS), and wet distiller grains (WDG). After these individual and combined waste(s) were treated by BSFL, we investigated the waste reduction rates and evaluated the responses of BSFL gut microbes to heavy metals of agricultural organic wastes. Additionally, the colloidal particles of residual wastes were characterized by combing energy dispersive X-ray (EDX) spectroscopy, Size potential, Zeta potential, and excitation-emission matrix (EEM) spectroscopy. Results indicated that the waste reduction rates were up to 74% in COM+WDG and 69% in WDG, most of heavy metals (e.g., Zn and Co) from organic wastes were not accumulated in the bodies of mature larvae after treatment. Further, results obtained from the prediction of gene function on the basis of 16 S rRNA data revealed that the presence of multi-resistance genes in the gut of BSFL can help the larvae resist Zn and/or Co stress. In addition, the drug sensitivity test implied that BSFL5_L and BSFL6_L from BSFL gut bacterial strains have multi-resistance to Co and Zn. Additionally, EDX results revealed that the colloidal particles in five waste residues after BSFL treatment are mainly consisted of Fe, Ca and Si, which can capture heavy metals (e.g., Cu, Mn). Results from EEM spectroscopy and PARAFAC showed that tryptophan-like and humic-like accumulatively account for 56%- 68% of all components. Importantly, these two components could strongly bind the metal elements and form colloidal particles with high stability, and therefore reduce the heavy metal pollution of agricultural organic wastes. Our findings offered an environment-friendly method to treat agricultural organic wastes, which would be far-reaching influence to our environment.


Assuntos
Dípteros , Metais Pesados , Bovinos , Feminino , Animais , Suínos , Larva , Esterco , Disponibilidade Biológica , Metais Pesados/toxicidade
7.
Pest Manag Sci ; 80(4): 1912-1923, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38088492

RESUMO

BACKGROUND: The white-backed planthopper (WPH), Sogatella furcifera (Horváth), is a destructive rice pest with strong reproductive capacity. To gain insights into the roles of chitinases in the reproductive process of this insect species, this study represents the first-ever endeavor to conduct an in-depth exploration into the reproductive functions of four chitinase genes. RESULTS: In this study, it was observed that four chitinase genes were expressed in female adults, with a relatively high expression level in the ovaries. SfCht2 and SfIDGF1 were highly expressed during later ovarian development. while SfENGase increased and then decreased with ovarian development. SfCht2, SfCht6-2 and SfENGase were highly expressed in fat body on the first and second days after eclosion, whereas SfIDGF1 highest on day 7. Compared with control group, Silencing four chitinase genes inhibited ovarian development and significantly shortened the oviposition period of S. furcifera, reducing egg-laying capacity but not affecting egg hatching. The detection demonstrated that the expression levels of SfVg, SfVgR and 70-90% juvenile hormone (JH) signaling pathway-related reproductive genes was significantly down-regulated. Moreover, SfCht6-2 and SfENGase significantly affected the expression levels of Target of Rapamycin (TOR) signaling pathway genes. SfENGase had the ability to impact nutrient signaling pathways and fatty acid metabolism, repressing vitellogenin synthesis and ultimately influencing ovarian development of S. furcifera. CONCLUSIONS: Overall, this study provides insight into the function of chitinases in insect fecundity and is of great significance for enriching the cognition of insect chitinase function. They will become the suitable target genes for controlling the most destructive rice planthoppers. © 2023 Society of Chemical Industry.


Assuntos
Quitinases , Hemípteros , Feminino , Animais , Quitinases/genética , Quitinases/farmacologia , Reprodução/genética , Fertilidade/genética , Oviposição/genética
8.
Exp Appl Acarol ; 92(1): 1-11, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38112881

RESUMO

The nuclear receptor gene Ecdysone-induced protein 75 (E75), as the component of ecdysone response genes in the ecdysone signaling pathway, has important regulatory function for insect molting. However, the regulatory function of E75 during the molting process of spider mites is not yet clear. In this study, the expression pattern of E75 in the molting process of the spider mite Tetranychus urticae was analyzed. The results showed that there was a peak at 8 h post-molting, followed by a decline 8 h after entering each respective quiescent stage across various developmental stages. During the deutonymph stage, the expression dynamics of E75, observed at 4-h intervals, indicated that the transcript levels of TuE75 peaked at 24 h, coinciding with the onset of molting in the mites. To investigate the function of TuE75 during the molting process, silencing TuE75 through dsRNA injection into deutonymph mites at the age of 8 h yielded a notable outcome: 78% of the deutonymph mites were unable to progress to the adult stage. Among these phenotypic mites, 37% were incapable of transitioning into the quiescent state and eventually succumbed after a certain period. An additional 41% of the mites successfully entered the quiescent state but encountered difficulties in shedding the old epidermis, leading to eventual mortality. In summary, these results suggested that TuE75 plays a key role in the molting process of T. urticae.


Assuntos
Muda , Tetranychidae , Animais , Muda/genética , Ecdisona , Tetranychidae/genética , Receptores Citoplasmáticos e Nucleares/genética
9.
Pestic Biochem Physiol ; 197: 105695, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38072550

RESUMO

Nuclear receptors play a crucial role in various signaling and metabolic pathways, such as insect molting and development. Buprofezin (2-tert-butylimino-3-isopropyl-5-phenyl-perhydro-1, 3, 5-thiadiazin-4-one), a chitin synthesis inhibitor, causes molting deformities and slow death in insects by inhibiting chitin synthesis and interfering with their metabolism. This study investigated whether buprofezin affects insect ecdysteroid signaling pathway. The treatment of buprofezin significantly suppressed the transcription levels of SfHR3 and SfHR4, two nuclear receptor genes, in third-instar nymphs of Sogatella furcifera. Meanwhile, the transcription levels of SfHR3 and SfHR4 in first-day fifth-instar nymphs were induced at 12 h after 20E treatment. In addition, the silencing of SfHR3 and SfHR4 genes in first-day fifth-instar nymphs caused severe developmental delay and molting failure, resulting in a significant reduction of survival rates at 7.36% and 2.99% on the eighth day, respectively. Further analysis showed that the silencing SfHR3 and SfHR4 significantly inhibited the transcription levels of chitin synthesis and degradation-related genes. These results indicate that buprofezin can inhibits chitin synthesis and degradation by suppressing the signal transduction of 20E through SfHR3 and SfHR4, leading to molting failure and death. This study not only expands our understanding of the molecular mechanism of buprofezin in pest control but also lays a foundation for developing new control strategies of RNAi by targeting SfHR3 and SfHR4.


Assuntos
Hemípteros , Muda , Animais , Muda/genética , Hemípteros/metabolismo , Insetos , Receptores Citoplasmáticos e Nucleares/metabolismo , Quitina/metabolismo , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo
10.
Exp Appl Acarol ; 91(4): 571-584, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37907795

RESUMO

Mass rearing of the predatory mite Neoseiulus californicus (McGregor) (Acari: Phytoseiidae) using natural (prey) methods is costly and laborious, limiting its application in the biological control of pests. A high-production, low-cost method using a prey substitute would help to relieve this problem. Oulenziella bakeri Hughes (Acari: Winterschmidtiidae) could be an alternative prey source, but studies on the reproductive parameters of N. californicus under rearing conditions are lacking. This study evaluated the potential of O. bakeri as an alternative prey in N. californicus rearing by comparing developmental parameters among N. californicus reared on three diets based on an age-stage two-sex life table. We found that the preoviposition period and developmental time of N. californicus did not vary based on diet. The fecundity of N. californicus adults reared on O. bakeri was 29.8 eggs per female, which was lower than that of adults reared on Tetranychus urticae Koch (Acari: Tetranychidae) (42.9 eggs per female); there was no significant difference between O. bakeri and apple pollen (30.2 eggs per female). The oviposition rate of mites fed on O. bakeri was 69% of that fed on T. urticae. Neoseiulus californicus reared on O. bakeri and apple pollen showed the same intrinsic rate of increase (0.25 per day), which was 86% of the rate of those fed on T. urticae. Compared with predatory mites reared on natural prey, N. californicus reared on O. bakeri had a high survival rate and good oviposition and population growth parameters, suggesting that O. bakeri is suitable for the rearing of N. californicus.


Assuntos
Ácaros , Tetranychidae , Feminino , Animais , Reprodução , Fertilidade , Oviposição , Comportamento Predatório , Controle Biológico de Vetores/métodos
11.
Exp Appl Acarol ; 91(3): 439-461, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37870736

RESUMO

Chiggers are common ectoparasites and the exclusive vector of scrub typhus. Based on previous investigations from a unique geographical area in Yunnan Province of southwest China, the Three Parallel Rivers Area, we retrospectively studied the species diversity and related ecology of chiggers on rodents and other small mammals. A very high species diversity of 120 chigger species was identified. Five dominant chigger species accounted for 59.4% (5238/8965) of total chiggers, and among them Leptotrombidium scutellare is the second major vector of scrub typhus in China. Species diversity of the chigger community fluctuates greatly in different altitudinal and latitudinal gradients. There are significant differences in species composition, species diversity and dominant species of chiggers among hosts with apparent community heterogeneity. Based on the species abundance distribution, the expected total number of chigger species was estimated to be 170, 50 more than the number of actually collected species; this further indicates a very high chigger species diversity in this area. The bipartite ecological network analysis revealed the intricate relationships between chigger and host species-positive and negative correlations existed among some species of dominant and vector chiggers.


Assuntos
Infestações por Ácaros , Doenças dos Roedores , Tifo por Ácaros , Trombiculidae , Animais , Estudos Retrospectivos , China , Mamíferos/parasitologia , Infestações por Ácaros/parasitologia , Roedores/parasitologia
12.
Biomolecules ; 13(10)2023 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-37892115

RESUMO

Glutamine: fructose-6-phosphate aminotransferase (GFAT), the fourth enzyme in the chitin synthesis pathway, exerts wide-ranging effects on the growth and development of organisms. However, the role of GFAT in Sogatella furcifera remains unknown. In this study, the functional significance of the GFAT gene of S. furcifera was analyzed using a reverse transcription-polymerase chain reaction and RNA interference (RNAi) analyses. The complementary DNA sequence of SfGFAT was 3162 bp in length and contained a 2067 bp open reading frame encoding 688 amino acid residues. Structural domain analysis indicated that the SfGFAT protein consisted of one glutamine aminotransferase class 2 domain and two sugar isomerase domains. Expression profile analysis revealed that SfGFAT was expressed throughout the egg, nymph, and adult phases and was strongly expressed on the first day of each nymph stage and in the integuments of five tissues. RNAi results revealed that SfGFAT gene silencing significantly inhibited the mRNA expression of the target gene and resulted in severe mortality among S. furcifera. In summary, these findings demonstrate that SfGFAT plays a critical role in the development of S. furcifera. Moreover, these results may aid in the development of methods to control the spread of S. furcifera.


Assuntos
Glutamina , Hemípteros , Animais , Sequência de Aminoácidos , Glutamina/metabolismo , Hemípteros/genética , Transaminases/metabolismo , Crescimento e Desenvolvimento
13.
Int J Mol Sci ; 24(19)2023 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-37834248

RESUMO

In insects, the ecdysteroid hormone regulates development and reproduction. However, its function in the reproduction process of spider mites is still unclear. In this study, we investigated the effect of the Halloween gene Spook on the oviposition of the reproduction process in a spider mite, Tetranychus urticae. The expression patterns of the ecdysteroid biosynthesis and signaling pathway genes, as analyzed by RT-qPCR, showed that the expression pattern of the Halloween genes was similar to the oviposition pattern of the female mite and the expression patterns of the vitellogenesis-related genes TuVg and TuVgR, suggesting that the Halloween genes are involved in the oviposition of spider mites. To investigate the function of the ecdysteroid hormone on the oviposition of the reproduction process, we carried out an RNAi assay against the Halloween gene Spook by injection in female mites. Effective silencing of TuSpo led to a significant reduction of oviposition. In summary, these results provide an initial study on the effect of Halloween genes on the reproduction in T. urticae and may be a foundation for a new strategy to control spider mites.


Assuntos
Oviposição , Tetranychidae , Animais , Feminino , Ecdisteroides/genética , Reprodução/genética , Interferência de RNA
14.
Insect Sci ; 2023 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-37689966

RESUMO

Neuropeptides are crucial in regulation of a rich variety of developmental, physiological, and behavioral functions throughout the life cycle of insects. Using an integrated approach of multiomics, we identified neuropeptide precursors in the greater wax moth Galleria mellonella, which is a harmful pest of honeybee hives with a worldwide distribution. Here, a total of 63 and 67 neuropeptide precursors were predicted and annotated in the G. mellonella genome and transcriptome, in which 40 neuropeptide precursors were confirmed in the G. mellonella peptidome. Interestingly, we identified 12 neuropeptide precursor genes present in G. mellonella but absent in honeybees, which may be potential novel pesticide target sites. Honeybee hives were contaminated with heavy metals such as lead, enabling its bioaccumulation in G. mellonella bodies through the food chain, we performed transcriptome sequencing to analyze the effects of Pb stress on the mRNA expression level of G. mellonella neuropeptide precursors. After treatment by Pb, the expression of neuropeptide F1 was found to be significantly downregulated, implying that this neuropeptide might be associated with responding to the heavy metal stress in G. mellonella. This study comprehensively identified neuropeptide precursors in G. mellonella, and discussed the effects of heavy metals on insect neuropeptides, with the example of G. mellonella. The results are valuable for future elucidation of how neuropeptides regulate physiological functions in G. mellonella and contribute to our understanding of the insect's environmental plasticity and identify potential new biomarkers to assess heavy metal toxicity in insects.

15.
Parasites Hosts Dis ; 61(3): 272-281, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37648232

RESUMO

Chigger mites are the vector of scrub typhus. This study estimates the infestation status and ecological characteristics of chiggers on the chestnut white-bellied rat Niviventer fulvescens in Southwest China between 2001 and 2019. Chiggers were identified under the microscope, and infestation indices were calculated. The Preston's log-normal model was used to fit the curve of species abundance distribution. A total of 6,557 chiggers were collected in 136 of 342 N. fulvescens rats, showing high overall infestation indices (prevalence=39.8%, mean abundance=19.2, mean intensity=48.2) and high species diversity (S=100, H'=3.0). Leptotrombidium cangjiangense, Neotrombicula japonica, and Ascoschoengastia sifanga were the three dominant chigger species (constituent ratio=42.9%; 2,736/6,384) and exhibited an aggregated distribution among different rat individuals. We identified 100 chigger species, with 3 of them (Leptotrombidium scutellare, Leptotrombidium wenense, and Leptotrombidium deliense) as the main vectors of scrub typhus in China and nine species as potential vectors of this disease. Disease vector occurrence on N. fulvescens may increase the risk of spreading scrub typhus from rats to humans. Chigger infestation on N. fulvescens varied significantly in different environments. The species abundance distribution showed a log-normal distribution pattern. The estimated number of chigger species on N. fulvescens was 126 species.


Assuntos
Asteraceae , Infestações por Ácaros , Tifo por Ácaros , Trombiculidae , Humanos , Animais , Ratos , Murinae , China/epidemiologia , Vetores de Doenças
16.
Molecules ; 28(15)2023 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-37570704

RESUMO

Widespread environmental contamination caused by huge amounts of wastes generated by human activities has become a critical global concern that requires urgent action. The black soldier fly (BSFL) has gradually been used to treat different wastes due to high efficiency and low cost. However, little information is available regarding the treatment of mixed wastes by BSFLs. The impact of BSFLs on conversion of cow manure (COM) and pig manure (PM) via the incorporation of wet distiller grains (WDG) was assessed. Results demonstrate that the waste reduction rate was increased by 20% by incorporating 45% WDG to COM and PM. The bioconversion rate of BSFLs in COM and PM also increased from 1.20 ± 0.02% and 0.92 ± 0.02% to 10.54 ± 0.06% and 10.05 ± 0.11%, respectively. Total nitrogen content and δ15N/14N ratios of WDG + COM and WDG + PM were found to be significantly lower than those of COM and PM alone (p < 0.01). The organic matter changes during manure degradation were further analyzed by combing ultraviolet-visible spectrum (UV-vis) with excitation-emission matrix (EEM) spectroscopy techniques and fluorescence area integration (FRI) method. The UV-vis spectra results indicate that the addition of WDG to manures resulted in the decreased aromaticity and molecular weight of the waste. EEM spectra demonstrated that the accumulative Pi,n values of regions III and V in COM, COM + WDG, PM, and PM + WDG were 58%, 49%, 52% and 63%, respectively. These results not only provide new insights into the potential of mixed wastes for BSFL treatment but also contribute to the basis for the formulation of effective management measurements that reduce and/or reuse these wastes.


Assuntos
Dípteros , Esterco , Bovinos , Feminino , Humanos , Animais , Suínos , Larva , Gado , Poluição Ambiental
17.
Int J Mol Sci ; 24(12)2023 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-37373537

RESUMO

Mites, the second largest arthropod group, exhibit rich phenotypic diversity in the development of appendages (legs). For example, the fourth pair of legs (L4) does not form until the second postembryonic developmental stage, namely the protonymph stage. These leg developmental diversities drive body plan diversity in mites. However, little is known about the mechanisms of leg development in mites. Hox genes, homeotic genes, can regulate the development of appendages in arthropods. Three Hox genes, Sex combs reduced (Scr), Fushi tarazu (Ftz) and Antennapedia (Antp), have previously been shown to be expressed in the leg segments of mites. Here, the quantitative real-time reverse transcription PCR shows that three Hox genes are significantly increased in the first molt stage. RNA interference results in a set of abnormalities, including L3 curl and L4 loss. These results suggest that these Hox genes are required for normal leg development. Furthermore, the loss of single Hox genes results in downregulating the expression of the appendage marker Distal-less (Dll), suggesting that the three Hox genes can work together with Dll to maintain leg development in Tetranychus urticae. This study will be essential to understanding the diversity of leg development in mites and changes in Hox gene function.


Assuntos
Artrópodes , Tetranychidae , Animais , Genes Homeobox/genética , Proteínas de Homeodomínio/genética , Tetranychidae/genética , Tetranychidae/metabolismo , Interferência de RNA , Regulação da Expressão Gênica no Desenvolvimento
18.
Animals (Basel) ; 13(9)2023 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-37174517

RESUMO

Chigger mites (Acari) are common ectoparasites on rodents, and they are the exclusive vector of scrub typhus. South China field mouse (Apodemus draco) and Lantsang field mouse (A. ilex) are two sibling rodent species. Based on field investigations in southwest China (2001-2015), this paper compared the infestation of these two mouse species with chiggers. Of 42 chigger species identified from two mouse species, 36 were found on A. draco, 11 on A. ilex and 5 common species on both mice. Jaccard similarity index (J = 0.12, J < 0.25) showed a very different species composition of chiggers on two mouse species, and some parameters of the chigger community were also different. The overall mean intensity of chiggers on A. draco (MI = 4.26) was higher than that on A. ilex (MI = 3.91, p < 0.05). The dominant chigger species on A. draco were Trombiculindus yunnanus, Leptotrombidium scutellare (a major vector species in China) and L. sinicum with a total constituent ratio Cr = 42.9% (106/247). Leptorombidium sinicum and L. scutellare independently occurred on A. draco with an association coefficient V = 0.09 (V ≈ 0). The dominant chigger species on A. ilex were L. rusticum, L. densipunctatum and L. gongshanense, with a total Cr = 58.14% (25/43). Leptorombidium rusticum and L. densipunctatum on A. ilex had a slight positive association (V = 0.49, 0.5 < V < 1). All dominant chigger species were unevenly distributed among different individuals of two mouse species. Chigger infestation showed sex bias on different sexes of two mouse species. The species abundance of the chigger community on A. draco was revealed as a log-normal distribution pattern.

19.
Animals (Basel) ; 13(8)2023 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-37106926

RESUMO

A cauda-like structure was found, firstly in Cunaxidae, and with it the new taxa Cunaxicaudinae Chen & Jin subfam. nov., and its two new genera, Cunaxicaudus Chen & Jin gen. nov. (type genus) and Brevicaudus Chen & Jin gen. nov., were erected. Cunaxicaudinae Chen & Jin subfam. nov. differs from the known members of the family Cunaxidae by the unique conspicuous cauda derived from the posterior end of the hysterosoma. The generic features of Cunaxicaudus Chen & Jin gen. nov. are as follows: the posterior of the hysterosoma elongated as a much longer cauda; palp between genu and tibiotarsus without apophysis; e1 closer to d1 than f1; and e1 closer to mid-line than c1 and d1. The generic features of Brevicaudus Chen & Jin gen. nov. are as follows: the posterior of hysterosoma elongated as a short cauda; palp between genu and tibiotarsus with one apophysis; distance between setae e1 and d1 approximately equal to e1; and f1, e1 as close to mid-line as c1 and d1 to mid-line. It is proposed that the specialized cauda may be the result of the evolution of the sperm transfer mode.

20.
Insects ; 14(4)2023 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-37103123

RESUMO

Little is known on how long noncoding RNAs (lncRNAs) and mRNAs cooperatively participate in regulating the nymph-to-adult development transition of Sogatella furcifera. Herein, lncRNA and mRNA libraries were constructed in three different developmental stages of S. furcifera, namely, prior to (PE), during (DE), and after (AE) ecdysis. Overall, 4649 lncRNAs were identified and divided into intergenic (53.90%), intronic (1.33%), sense (8.99%), antisense (21.75%), and bidirectional (3.94%) lncRNAs. Moreover, 795 differentially expressed lncRNAs were identified. Specifically, upon comparing PE and DE, 2719 target mRNAs were predicted for 574 lncRNAs. Upon comparing PE and AE, 2816 target mRNAs were predicted for 627 lncRNAs. Finally, upon comparing DE and AE, 51 target mRNAs were predicted for 35 lncRNAs. Kyoto Encyclopedia of Genes and Genome functional enrichment analysis revealed that the target genes of 795 lncRNAs were enriched in metabolic pathways, amino sugar and nucleotide sugar metabolism, and fatty acid metabolism. Subsequently, interaction analysis indicated that MSTRG.16086.1, MSTRG.16087.1, and MSTRG.2447.1 were functionally associated with cuticle protein and chitin biosynthesis. Finally, 11 differentially expressed lncRNAs were significantly enriched in 3rd and 4th instar nymphs. Our findings suggest that lncRNAs play a critical regulatory role during the molting of S. furcifera.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA