Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Phytomedicine ; 123: 155188, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38056146

RESUMO

BACKGROUND: Non-alcoholic steatohepatitis (NASH) is a global health problem with no effective treatment. Isoquercitrin (IQ) alters hepatic lipid metabolism and inhibits adipocyte differentiation. The underlying regulatory mechanisms of IQ in regulating insulin resistance (IR) and lipid metabolism remain unclear. PURPOSE: This study was aimed at investigating the effects of IQ on NASH and deciphering whether the underlying mechanisms are via modulation of galectin-3 mediated IR and lipid metabolism. METHODS: IR-HepG2 cell lines were used to demonstrate the ability of IQ to modulate galectin-3-mediated glucose disposal and lipid metabolism. A 20-week high-fat diet (HFD)-induced NASH model was established in C57BL/6J mice, and the protective effect of IQ on lipid disposal in the liver was verified. Further, the mRNA and protein levels of glucose and lipid metabolism were investigated, and lysophosphatidylcholine (LPC) and acylcarnitine (AC) profiling were performed to characterize the changes in endogenous substances associated with mitochondrial function and lipid metabolism in serum and cells. Furthermore, the pharmacokinetic features of IQ were explored in a rat model of NASH. RESULTS: IQ restored liver function and ameliorated inflammation and lipid accumulationin NASH model mice. Notably, significant regulation of the proteins included fatty acid-generating and transporting, cholesterol metabolism enzymes, nuclear transcription factors, mitochondrial metabolism, and IR-related enzymes was noted to be responsible for the therapeutic mechanisms of IQ against experimental NASH. Serum lipid metabolism-related metabolomic assay confirmed that LPC and AC biosynthesis mostly accounted for the therapeutic effect of IQ in mice with NASH and that IQ maintained the homeostasis of LPC and AC levels. CONCLUSION: This is the first study showing that IQ protects against of NASH by modulating galectin-3-mediated IR and lipid metabolism. The mechanisms responsible for liver protection and improved lipid metabolic disorder by IQ may be related to the suppression of IR and regulation of mitochondrial function and lipid metabolism. Galectin-3 down-regulation represents a potentially novel approach for the treatment and prevention of NASH.


Assuntos
Resistência à Insulina , Hepatopatia Gordurosa não Alcoólica , Quercetina/análogos & derivados , Camundongos , Animais , Ratos , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/metabolismo , Galectina 3/genética , Galectina 3/metabolismo , Galectina 3/farmacologia , Metabolismo dos Lipídeos , Camundongos Endogâmicos C57BL , Fígado , Dieta Hiperlipídica/efeitos adversos , Glucose/metabolismo , Lipídeos
2.
J Clin Lab Anal ; 37(1): e24795, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36464783

RESUMO

BACKGROUND: Acquired immune deficiency syndrome (AIDS), human immunodeficiency virus (HIV) infection, and antiretroviral therapy are usually associated with metabolic disorders. Screening for biomarkers to evaluate the progression of metabolic disorders is important for the diagnosis and treatment of HIV infection. This study aimed to establish and validate a method to quantify serum aromatic amino acid (AAA) metabolites as biomarkers of metabolic disorders in patients with HIV. METHODS: The AAAs and metabolites were analyzed using high-performance liquid chromatography-tandem mass spectrometry. Pearson's correlation, heatmap, and receiver operating characteristic curve analyses were used for statistical analysis. RESULTS: Under optimal detection conditions, the lower limits of phenylalanine (Phe), tryptophan (Trp), kynurenine (Kyn), tyrosine, phenylacetylglutamine (PAGln), and 5-hydroxytryptamine quantification reached 0.02, 0.02, 0.01, 0.02, 0.01, and 0.002 µg/ml, respectively, and the precision of intra- and inter-day was stay below 10.30%. Serum samples were stable for at least 6 months when stored at -80°C. The inter-group differences and associations between the biomarkers exhibited a particular volatility trend in PAGln, Trp, and Kyn metabolism in HIV-infected patients with metabolic syndrome. CONCLUSIONS: The developed method can be used for rapid and sensitive quantification of the AAA metabolism profile in vivo to further appraise the process of HIV infection, evaluate intervening measures, conduct mechanistic investigations, and further study the utility of PAGln, a characteristic metabolite of AAA, as a biomarker of HIV infection coupled with metabolic syndrome.


Assuntos
Infecções por HIV , Síndrome Metabólica , Humanos , Aminoácidos Aromáticos , Espectrometria de Massas em Tandem/métodos , Triptofano , Biomarcadores
3.
Front Pharmacol ; 13: 984611, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36059967

RESUMO

Objective: To explore the active components and epigenetic regulation mechanism underlying the anti-inflammatory effects of Lonicerae Japonicae Flos and Forsythiae Fructus herb-pair (LFP) in carbon tetrachloride (CCl4)-induced rat liver fibrosis. Methods: The main active ingredients and disease-related gene targets of LFP were determined using TCMSP and UniProt, and liver fibrosis disease targets were screened in the GeneCards database. A network was constructed with Cytoscape 3.8.0 and the STRING database, and potential protein functions were analyzed using bioinformatics analysis. Based on these analyses, we determined the main active ingredients of LFP and evaluated their effects in a CCl4-induced rat liver fibrosis model. Serum biochemical indices were measured using commercial kits, hepatocyte tissue damage and collagen deposition were evaluated by histopathological studies, and myofibroblast activation and inflammation were detected by reverse transcription-polymerase chain reaction (RT-PCR) and western blotting. High-performance liquid chromatography-mass spectrometry was performed to determine the levels of homocysteine, reduced glutathione, and oxidized glutathione, which are involved in inflammation and oxidative stress. Results: The main active components of LFP were quercetin, kaempferol, and luteolin, and its main targets were α-smooth muscle actin, cyclooxygenase-2, formyl-peptide receptor-2, prostaglandin-endoperoxide synthase 1, nuclear receptor coactivator-2, interleukinß, tumor necrosis factor α, CXC motif chemokine ligand 14, and transforming growth factor ß1. A combination of quercetin, kaempferol, and luteolin alleviated the symptoms of liver fibrosis. Conclusion: The results of this study support the role of LFP in the treatment of liver fibrosis, and reveal that LFP reduces collagen formation, inflammation, and oxidative stress. This study suggests a potential mechanism of action of LFP in the treatment of liver fibrosis.

4.
Clin Chim Acta ; 526: 30-42, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-34942169

RESUMO

Human immunodeficiency virus (HIV) infection and highly active antiretroviral therapy use are associated with the disruption of lipid and glucose metabolism. Herein, a sensitive and robust high-performance liquid chromatography-tandem mass spectrometry method for the quantitation of lysophosphatidylcholines (LPCs) and acylcarnitines (ACs) in human blood serum was developed and validated to investigate them as markers of metabolic disorders in HIV-infected patients. Under optimal extraction and detection conditions, the lower limits of quantification reached 5 ng/mL (LPCs) and 0.1 ng/mL (ACs), and precision and accuracy for both intra- and inter-day analyses were generally below 15%. Serum samples were stable for at least six months when stored at - 80 °C and for at least 12 h when stored at 4 °C or 25 °C. We investigated inter-group differences and associations between the biomarkers and observed a particular volatilitytrend of LPCs and ACs for HIV-infected patients with metabolic disorders. Thus, the developed method can be used for the rapid and sensitive quantitation of LPCs and ACs in vivo to further appraise the process of HIV infection, evaluate interveningmeasures, conduct mechanistic investigations, and further study the utility of LPCs and ACs as biomarkers of HIV infection coupled with metabolic disorders.


Assuntos
Infecções por HIV , Doenças Metabólicas , Cromatografia Líquida de Alta Pressão , Infecções por HIV/complicações , Humanos , Metabolismo dos Lipídeos , Espectrometria de Massas em Tandem
5.
Front Pharmacol ; 13: 1116257, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36699093

RESUMO

Objective: To explore the pharmacological effects and molecular mechanism of quercetin 7-rhamnoside (Q7R) in the treatment of cholestatic hepatitis induced by alpha-naphthylisothiocyanate (ANIT). Methods: ANIT-induced cholestatic hepatitis rat model was used to investigate the hepatoprotective effects of three different doses of Q7R (1.25 mg/kg; 2.5 mg/kg; 5 mg/kg). Serum biochemical indices were detected using commercial kits. H&E and masson staining were used to observe hepatic tissue damage and collagen deposition in hepatocytes. The metabolism of bile acid-related substances was detected via HPLC-MS/MS by 5-(diisopropylamino) amylamine (DIAAA) derivative method. Hepatocyte injury, cholestasis, and inflammation were detected at the mRNA and protein levels using reverse transcription-polymerase chain reaction (RT-PCR) and western blotting, respectively. Results: Q7R can decrease the level of CYP7A1, and increase FXR, CYP27A1 so then improving abnormal bile acid secretion. Furthermore, Q7R can also ameliorating inflammation by reduce TNF-α, IL-1ß, PTGS1, PTGS2, NCOA2, NF-κB level. Therefore, Q7R had an effective therapeutic effect on ANIT-induced cholestatic hepatitis, improving abnormal bile acid secretion, and inhibiting inflammatory responses. Conclusion: The results demonstrated that Q7R treat cholestatic hepatitis by regulating bile acid secretion and alleviating inflammation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA