Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Microb Biotechnol ; 16(11): 2161-2180, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37837246

RESUMO

The industrial potential of Saccharomyces cerevisiae has extended beyond its traditional use in fermentation to various applications, including recombinant protein production. Herein, comparative genomics was performed with three industrial S. cerevisiae strains and revealed a heterozygous diploid genome for the 98-5 and KSD-YC strains (exploited for rice wine fermentation) and a haploid genome for strain Y2805 (used for recombinant protein production). Phylogenomic analysis indicated that Y2805 was closely associated with the reference strain S288C, whereas KSD-YC and 98-5 were grouped with Asian and European wine strains, respectively. Particularly, a single nucleotide polymorphism (SNP) in FDC1, involved in the biosynthesis of 4-vinylguaiacol (4-VG, a phenolic compound with a clove-like aroma), was found in KSD-YC, consistent with its lack of 4-VG production. Phenotype microarray (PM) analysis showed that KSD-YC and 98-5 displayed broader substrate utilization than S288C and Y2805. The SNPs detected by genome comparison were mapped to the genes responsible for the observed phenotypic differences. In addition, detailed information on the structural organization of Y2805 selection markers was validated by Sanger sequencing. Integrated genomics and PM analysis elucidated the evolutionary history and genetic diversity of industrial S. cerevisiae strains, providing a platform to improve fermentation processes and genetic manipulation.


Assuntos
Saccharomyces cerevisiae , Vinho , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Fermentação , Genômica , Fenótipo , Análise em Microsséries
2.
mBio ; 13(6): e0294422, 2022 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-36377896

RESUMO

The KEOPS (kinase, putative endopeptidase, and other proteins of small size) complex has critical functions in eukaryotes; however, its role in fungal pathogens remains elusive. Herein, we comprehensively analyzed the pathobiological functions of the fungal KEOPS complex in Cryptococcus neoformans (Cn), which causes fatal meningoencephalitis in humans. We identified four CnKEOPS components: Pcc1, Kae1, Bud32, and Cgi121. Deletion of PCC1, KAE1, or BUD32 caused severe defects in vegetative growth, cell cycle control, sexual development, general stress responses, and virulence factor production, whereas deletion of CGI121 led to similar but less severe defects. This suggests that Pcc1, Kae1, and Bud32 are the core KEOPS components, and Cgi121 may play auxiliary roles. Nevertheless, all KEOPS components were essential for C. neoformans pathogenicity. Although the CnKEOPS complex appeared to have a conserved linear arrangement of Pcc1-Kae1-Bud32-Cgi121, as supported by physical interaction between Pcc1-Kae1 and Kae1-Bud32, CnBud32 was found to have a unique extended loop region that was critical for the KEOPS functions. Interestingly, CnBud32 exhibited both kinase activity-dependent and -independent functions. Supporting its pleiotropic roles, the CnKEOPS complex not only played conserved roles in t6A modification of ANN codon-recognizing tRNAs but also acted as a major transcriptional regulator, thus controlling hundreds of genes involved in various cellular processes, particularly ergosterol biosynthesis. In conclusion, the KEOPS complex plays both evolutionarily conserved and divergent roles in controlling the pathobiological features of C. neoformans and could be an anticryptococcal drug target. IMPORTANCE The cellular function and structural configuration of the KEOPS complex have been elucidated in some eukaryotes and archaea but have never been fully characterized in fungal pathogens. Here, we comprehensively analyzed the pathobiological roles of the KEOPS complex in the globally prevalent fungal meningitis-causing pathogen C. neoformans. The CnKEOPS complex, composed of a linear arrangement of Pcc1-Kae1-Bud32-Cgi121, not only played evolutionarily conserved roles in growth, sexual development, stress responses, and tRNA modification but also had unique roles in controlling virulence factor production and pathogenicity. Notably, a unique extended loop structure in CnBud32 is critical for the KEOPS complex in C. neoformans. Supporting its pleiotropic roles, transcriptome analysis revealed that the CnKEOPS complex governs several hundreds of genes involved in carbon and amino acid metabolism, pheromone response, and ergosterol biosynthesis. Therefore, this study provides novel insights into the fungal KEOPS complex that could be exploited as a potential antifungal drug target.


Assuntos
Cryptococcus neoformans , Proteínas Fúngicas , Humanos , Cryptococcus neoformans/enzimologia , Cryptococcus neoformans/metabolismo , Cryptococcus neoformans/patogenicidade , Ergosterol , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Fosfotransferases/metabolismo , Endopeptidases/metabolismo
3.
J Microbiol ; 59(7): 658-665, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34212289

RESUMO

Yvh1 is a dual-specificity phosphatase (DUSP) that is evolutionarily conserved in eukaryotes, including yeasts and humans. Yvh1 is involved in the vegetative growth, differentiation, and virulence of animal and plant fungal pathogens. All Yvh1 orthologs have a conserved DUSP catalytic domain at the N-terminus and a zinc-binding (ZB) domain with two zinc fingers (ZFs) at the C-terminus. Although the DUSP domain is implicated in the regulation of MAPK signaling in humans, only the ZB domain is essential for most cellular functions of Yvh1 in fungi. This study aimed to analyze the functions of the DUSP and ZB domains of Yvh1 in the human fungal pathogen Cryptococcus neoformans, whose Yvh1 (CnYvh1) contains a DUSP domain at the C-terminus and a ZB domain at the N-terminus. Notably, CnYvh1 has an extended internal domain between the two ZF motifs in the ZB domain. To elucidate the function of each domain, we constructed individual domain deletions and swapping strains by complementing the yvh1Δ mutant with wild-type (WT) or mutated YVH1 alleles and examined their Yvh1-dependent phenotypes, including growth under varying stress conditions, mating, and virulence factor production. Here, we found that the complementation of the yvh1Δ mutant with the mutated YVH1 alleles having two ZFs of the ZB domain, but not the DUSP and extended internal domains, restored the WT phenotypic traits in the yvh1Δ mutant. In conclusion, the ZB domain, but not the N-terminal DUSP domain, plays a pivotal role in the pathobiological functions of cryptococcal Yvh1.


Assuntos
Cryptococcus neoformans/enzimologia , Fosfatases de Especificidade Dupla/química , Fosfatases de Especificidade Dupla/metabolismo , Domínios Proteicos , Zinco/metabolismo , Domínio Catalítico , Cryptococcus neoformans/citologia , Cryptococcus neoformans/genética , Cryptococcus neoformans/patogenicidade , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Teste de Complementação Genética , Melaninas/biossíntese , Mutação , Ligação Proteica , Urease/biossíntese , Fatores de Virulência/biossíntese , Dedos de Zinco
4.
Nat Commun ; 11(1): 4212, 2020 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-32839469

RESUMO

Phosphatases, together with kinases and transcription factors, are key components in cellular signalling networks. Here, we present a systematic functional analysis of the phosphatases in Cryptococcus neoformans, a fungal pathogen that causes life-threatening fungal meningoencephalitis. We analyse 230 signature-tagged mutant strains for 114 putative phosphatases under 30 distinct in vitro growth conditions, revealing at least one function for 60 of these proteins. Large-scale virulence and infectivity assays using insect and mouse models indicate roles in pathogenicity for 31 phosphatases involved in various processes such as thermotolerance, melanin and capsule production, stress responses, O-mannosylation, or retromer function. Notably, phosphatases Xpp1, Ssu72, Siw14, and Sit4 promote blood-brain barrier adhesion and crossing by C. neoformans. Together with our previous systematic studies of transcription factors and kinases, our results provide comprehensive insight into the pathobiological signalling circuitry of C. neoformans.


Assuntos
Cryptococcus neoformans/genética , Proteínas Fúngicas/genética , Perfilação da Expressão Gênica/métodos , Genoma Fúngico/genética , Estudo de Associação Genômica Ampla/métodos , Monoéster Fosfórico Hidrolases/genética , Animais , Análise por Conglomerados , Criptococose/microbiologia , Cryptococcus neoformans/patogenicidade , Feminino , Proteínas Fúngicas/classificação , Proteínas Fúngicas/metabolismo , Regulação Fúngica da Expressão Gênica , Camundongos Endogâmicos , Monoéster Fosfórico Hidrolases/classificação , Monoéster Fosfórico Hidrolases/metabolismo , Fosfotransferases/classificação , Fosfotransferases/genética , Fosfotransferases/metabolismo , Transdução de Sinais/genética , Termotolerância/genética , Fatores de Transcrição/classificação , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Virulência/genética
5.
Nat Commun ; 7: 12766, 2016 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-27677328

RESUMO

Cryptococcus neoformans is the leading cause of death by fungal meningoencephalitis; however, treatment options remain limited. Here we report the construction of 264 signature-tagged gene-deletion strains for 129 putative kinases, and examine their phenotypic traits under 30 distinct in vitro growth conditions and in two different hosts (insect larvae and mice). Clustering analysis of in vitro phenotypic traits indicates that several of these kinases have roles in known signalling pathways, and identifies hitherto uncharacterized signalling cascades. Virulence assays in the insect and mouse models provide evidence of pathogenicity-related roles for 63 kinases involved in the following biological categories: growth and cell cycle, nutrient metabolism, stress response and adaptation, cell signalling, cell polarity and morphology, vacuole trafficking, transfer RNA (tRNA) modification and other functions. Our study provides insights into the pathobiological signalling circuitry of C. neoformans and identifies potential anticryptococcal or antifungal drug targets.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA