Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
J Nat Med ; 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38775895

RESUMO

The practice of Chinese herbal medicines for the treatment of COVID-19 in China played an essential role for the control of mortality rate and reduction of recovery time. The iridoids is one of the main constituents of many heat-clearing and detoxifying Chinese medicines that were largely planted and frequently used in clinical practice. Twenty-three representative high content iridoids from several staple Chinese medicines were obtained and tested by a SARS-CoV-2 pseudo-virus entry-inhibition assay on HEK-293 T/ACE2 cells, a live HCoV-OC43 virus infection assay on HRT-18 cells, and a SARS-CoV-2 3CL protease inhibitory FRET assay followed by molecular docking simulation. The anti-pulmonary inflammation activities were further evaluated on a TNF-α induced inflammation model in A549 cells and preliminary SARs were concluded. The results showed that specnuezhenide (7), cornuside (12), neonuezhenide (15), and picroside III (21) exhibited promising antiviral activities, and neonuezhenide (15) could inhibit 3CL protease with an IC50 of 14.3 µM. Docking computation showed that compound 15 could bind to 3CL protease through a variety of hydrogen bonding and hydrophobic interactions. In the anti-pulmonary inflammation test, cornuside (12), aucubin (16), monotropein (17), and shanzhiside methyl ester (18) could strongly decrease the content of IL-1ß and IL-8 at 10 µM. Compound 17 could also upregulate the expression of the anti-inflammatory cytokine IL-10 significantly. The iridoids exhibited both anti-coronavirus and anti-pulmonary inflammation activities for their significance of existence in Chinese herbal medicines, which also provided a theoretical basis for their potential utilization in the pharmaceutical and food industries.

2.
J Enzyme Inhib Med Chem ; 39(1): 2296355, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38234133

RESUMO

Orthosiphon aristatus is a well-known folkloric medicine and herb for Guangdong soup for the treatment of rheumatism in China. Eight isopimarane-type and migrated pimarane-type diterpenoids (1-8), including a new one with a rarely occurring α,ß-unsaturated diketone C-ring, were isolated from O. aristatus. Their structures were determined by spectroscopic methods and quantum chemical calculations. Furthermore, the most abundant compound, orthosiphol K, was structurally modified by modern synthetic techniques to give seven new derivatives (9-15). The anti-rheumatoid arthritis activity of these diterpenoids were evaluated on a TNF-α induced MH7A human rheumatoid fibroblast-like synoviocyte model. Compound 10 showed the most potent activity among these compounds. Based on their inhibitory effects on the release levels of IL-1ß, the preliminary structure-activity relationships were concluded. Furthermore, western blot analysis revealed that 10 could increase the expression of IκBα and decrease the expression of NF-κB p65, and the expression levels of COX-2 and NLRP3 proteins were consequently down-regulated.


Assuntos
Artrite Reumatoide , Diterpenos , Orthosiphon , Humanos , Orthosiphon/química , Orthosiphon/metabolismo , Abietanos , Artrite Reumatoide/tratamento farmacológico , Fator de Necrose Tumoral alfa , Diterpenos/farmacologia , Diterpenos/química , NF-kappa B/metabolismo
3.
Phytochemistry ; 217: 113920, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37951561

RESUMO

Ten lignans, including six previously undescribed phenolic ester glycosyl lignans (1-6), were isolated from a well-known traditional Chinese medicine, Qin-Jiao, which is the dry root of Gentiana macrophylla Pall. (Gentianaceae). Their structures were determined by spectroscopic and chemical methods, especially 2D NMR techniques. Quantum chemical calculations of theoretical ECD spectra allowed the determination of their absolute configurations. Refer to its traditional applications for the treatment of rheumatic arthralgia and hepatopathy, these compounds were evaluated on a TNF-α induced MH7A human synoviocyte inflammation model and a D-GalN induced AML12 hepatocyte injury model. Compounds 1, 2, 5, and 6 significantly reduced the release of proinflammatory cytokine IL-1ß in MH7A cells at 15 µM and they also could strongly protect AML12 cells against D-GalN injury at 30 µM. Flow cytometry and Western blot analysis showed that compound 5 ameliorated D-GalN induced AML12 cell apoptosis by upregulating the expression of anti-apoptotic Bcl-2 protein and down-regulating the expression of pro-apoptotic Bax protein.


Assuntos
Medicamentos de Ervas Chinesas , Gentiana , Lignanas , Humanos , Gentiana/química , Lignanas/farmacologia , Glucosídeos/farmacologia , Glucosídeos/química , Medicamentos de Ervas Chinesas/farmacologia , Inflamação
4.
Bioorg Chem ; 142: 106937, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37913583

RESUMO

Gemcitabine (GEM) is a standard chemotherapeutic agent for patients with pancreatic cancer; however, GEM-based chemotherapy has a high rate of toxicity. A combination of GEM and active constituents from natural products may enhance its therapeutic efficacy and reduce its toxicity. This study investigated the synergistic effects of the combination of liriopesides B (LirB) from Liriope spicata var. prolifera and GEM on human pancreatic cancer cells. The results of our study showed that the combination of LirB and GEM synergistically decreased the viability of pancreatic cancer cells. The combination also caused a strong increase in apoptosis and a strong decrease in cell migration and invasion. Furthermore, LirB combined with GEM had potent inhibitory effects on pancreatic cancer stem cells (CSCs). Studies on the mechanisms of action showed that the combination more potently inhibited protein kinase B (Akt) and nuclear factor kappa B (NF-κB), as well as the downstream antiapoptotic molecules B-cell lymphoma 2 (Bcl-2) and survivin than either agent used alone. The results of this study suggest that the combination of LirB with GEM may improve the efficacy of GEM for the treatment of pancreatic cancer.


Assuntos
Gencitabina , Neoplasias Pancreáticas , Humanos , Desoxicitidina/farmacologia , Linhagem Celular Tumoral , Neoplasias Pancreáticas/patologia , NF-kappa B/metabolismo , Apoptose , Proliferação de Células
5.
Food Sci Nutr ; 11(11): 7026-7038, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37970412

RESUMO

Niudali (Callerya speciosa) is commonly grown in southeastern regions of China and consumed as a food ingredient. Although Niudali root extracts showed various biological activities, the hepatoprotective effects of Niudali root phytochemicals are not fully studied. Herein, we prepared two Niudali root aqueous extracts, namely, c and Niudali polysaccharides-enriched extract (NPE), and identified an alkaloid, (hypaphorine) in NEW. The hepatoprotective effects of NWE, NPE, and hypaphorine were evaluated in an acute liver injury model induced by carbon tetrachloride (CCl4) in mice. Pathohistological examination and blood chemistry assays showed that treatment of NWE, NPE, and hypaphorine alleviated CCl4-induced liver damage by lowering the liver injury score (by 75.51%, 80.01%, and 41.22%) and serum aspartate and alanine transaminases level (by 63.24%, 85.22%, and 49.74% and by 78.73%, 80.08%, and 81.70%), respectively. NWE, NPE, and hypaphorine also reduced CCl4-induced hepatic oxidative stresses in the liver tissue by decreasing the levels of malondialdehyde (by 40.00%, 51.25%, and 28.75%) and reactive oxygen species (by 30.22%, 36.14%, and 33.54%) while increasing the levels of antioxidant enzymes including superoxide dismutase (by 21.36%, 21.64%, and 8.90%), catalase (by 22.13%, 33.33%, and 5.39%), and glutathione (by 84.87%, 90.65%, and 80.53%), respectively. Mechanistic assays showed that NWE, NPE, and hypaphorine alleviated liver damage by mediating inflammatory biomarkers (e.g., pro-inflammatory cytokines) via the signaling pathways of mitogen-activated protein kinases and nuclear factor-κB. Findings from our study extend the understanding of Niudali's hepatoprotective effects, which is useful for its development as a dietary intervention for liver inflammation.

6.
Phytochemistry ; 216: 113887, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37806467

RESUMO

Four previously undescribed hirsutinolide-type sesquiterpenoids, cyanolides A-D (1-4), along with twelve known analogues (5-16), were isolated from the aerial parts of Cyanthillium cinereum. Their structures were determined by comprehensive analysis of NMR, HRESIMS, and ECD spectra. Compound 1 is a rarely occurring hirsutinolide-type sesquiterpenoid with 1,4-ether ring ruptured and containing a chlorine atom, and compounds 13-16 were reported from this plant for the first time. All compounds were tested for their inhibiting effects on prostate cancer cells. As a result, compounds 1, 3, and 8-14 exhibited significant anti-prostate cancer activity against PC-3 and LNCaP cells with IC50 values ranging from 2.2 ± 0.4 to 8.5 ± 0.7 µM and 3.0 ± 0.7 to 10.5 ± 1.1 µM, respectively. The preliminary structure-activity relationship was discussed. Further investigation showed that compound 1 induced apoptosis in PC-3 cells.


Assuntos
Asteraceae , Neoplasias da Próstata , Sesquiterpenos , Masculino , Humanos , Estrutura Molecular , Asteraceae/química , Sesquiterpenos/farmacologia , Sesquiterpenos/química , Relação Estrutura-Atividade , Neoplasias da Próstata/tratamento farmacológico
7.
Molecules ; 28(18)2023 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-37764389

RESUMO

Four previously undescribed terpenoid glucosides, including one sesquiterpenoid di-glucoside (1), two new iridoid glucosides (2, 3), and a new triterpenoid tri-glucoside (4), were isolated from a 70% ethanol extract of the root of Gentiana macrophylla (Gentianaceae), along with eight known terpenoids. Their structures were determined by spectroscopic techniques, including 1D, 2D NMR, and HRMS (ESI), as well as chemical methods. The absolute configuration of compound 1 was determined by quantum chemical calculation of its theoretical electronic circular dichroism (ECD) spectrum. The sugar moieties of all the new compounds were confirmed to be D-glucose by GC analysis after acid hydrolysis and acetylation. Anti-pulmonary inflammation activity of the iridoids were evaluated on a TNF-α induced inflammation model in A549 cells. Compound 2 could significantly alleviate the release of proinflammatory cytokines IL-1ß and IL-8 and increase the expression of anti-inflammatory cytokine IL-10.


Assuntos
Gentiana , Pneumonia , Humanos , Terpenos/farmacologia , Fator de Necrose Tumoral alfa , Glucosídeos/farmacologia , Células A549 , Citocinas , Extratos Vegetais/farmacologia
8.
Molecules ; 28(8)2023 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-37110629

RESUMO

Naproxen is widely used for anti-inflammatory treatment but it can lead to serious side effects. To improve the anti-inflammatory activity and safety, a novel naproxen derivative containing cinnamic acid (NDC) was synthesized and used in combination with resveratrol. The results showed that the combination of NDC and resveratrol at different ratios have a synergistic anti-inflammatory efficacy in RAW264.7 macrophage cells. It was indicated that the combination of NDC and resveratrol at a ratio of 2:1 significantly inhibited the expression of carbon monoxide (NO), tumor necrosis factor α (TNF-α), interleukin 6 (IL-6), induced nitric oxide synthase (iNOS), cyclooxygenase 2 (COX-2) and reactive oxygen species (ROS) without detectable side effects on cell viability. Further studies revealed that these anti-inflammatory effects were mediated by the activation of nuclear factor kappa-B (NF-κB), mitogen-activated protein kinase (MAPK) and phosphoinositide-3 kinase (PI3K)/protein kinase B (Akt) signaling pathways, respectively. Taken together, these results highlighted the synergistic NDC and resveratrol anti-inflammatory activity that could be further explored as a strategy for the treatment of inflammatory disease with an improved safety profile.


Assuntos
Proteínas Quinases Ativadas por Mitógeno , NF-kappa B , Animais , Camundongos , NF-kappa B/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Resveratrol/farmacologia , Naproxeno/farmacologia , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinase/metabolismo , Transdução de Sinais , Anti-Inflamatórios/farmacologia , Células RAW 264.7 , Lipopolissacarídeos/farmacologia , Óxido Nítrico/metabolismo , Ciclo-Oxigenase 2/metabolismo
9.
Chin J Nat Med ; 21(4): 298-307, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37120248

RESUMO

Five new terpenoids, including two vibsane-type diterpenoids (1, 2) and three iridoid allosides (3-5), together with eight known ones, were isolated from the leaves and twigs of Viburnum odoratissimum var.sessiliflorum. Their planar structures and relative configurations were determined by spectroscopic methods, especially 2D NMR techniques. The sugar moieties of the iridoids were confirmed as ß-D-allose by GC analysis after acid hydrolysis and acetylation. The absolute configurations of neovibsanin Q (1) and dehydrovibsanol B (2) were determined by quantum chemical calculation of their theoretical electronic circular dichroism (ECD) spectra and Rh2(OCOCF3)4-induced ECD analysis. The anti-inflammatory activities of compounds 1, 3, 4, and 5 were evaluated using an LPS-induced RAW264.7 cell model. Compounds 3suppressed the release of NO in a dose-dependent manner, with an IC50 value of 55.64 µmol·L-1. The cytotoxicities of compounds 1-5 on HCT-116 cells were assessed and the results showed that compounds 2 and 3 exhibited moderate inhibitory activities with IC50 values of 13.8 and 12.3 µmol·L-1, respectively.


Assuntos
Diterpenos , Viburnum , Terpenos/farmacologia , Viburnum/química , Estrutura Molecular , Diterpenos/química , Folhas de Planta/química
10.
Chem Commun (Camb) ; 59(25): 3747-3750, 2023 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-36897608

RESUMO

Fluorinated molecules are widely used in pharmaceutical and agrochemical industries. Herein we report the synthesis of 2-(3,3-difluoro-4-(silyloxy)but-1-en-1-yl)benzamides from the unprecedented rhodium(III)-catalyzed alkenylation of various benzamides with difluorohomoallylic silyl ethers. The practicability of this protocol is demonstrated by its broad substrate compatibility, good functional group tolerance, ready scalability and high regioselectivity. The oxygen in difluorohomoallylic silyl ethers makes ß-H elimination feasible, which suppresses both the ß-F elimination and dialkenylation of benzamides. This redox-neutral reaction proceeds efficiently via N-O bond cleavage without external oxidants and thus provides new opportunities for the synthesis of elaborate difluorinated compounds from readily available fluorinated synthons.

11.
Nutrients ; 16(1)2023 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-38201888

RESUMO

Diets() rich in fat are a major() cause() of metabolic disease(), and nutritional() food has been widely() used() to counteract the metabolic disorders such() as obesity() and fatty() liver(). The present study investigated the effects of oleuropein-enriched extract() from Jasminum grandiflorum L. flowers (OLE-JGF) in high-fat diet() (HFD)-fed mice and oleic acid() (OA)-treated AML-12 cells. Treatment() of HFD-fed mice with 0.6% OLE-JGF for 8 weeks significantly reduced body and liver() weights, as well as attenuating lipid dysmetabolism and hepatic steatosis. OLE-JGF administration() prominently suppressed the mRNA expressions() of monocyte chemoattractant protein()-1 (MCP-1) and cluster of differentiation 68 (CD68), and it also downregulated acetyl-CoA carboxylase (ACC) and fatty() acid() synthase (FAS) as well as sterol-regulatory-element()-binding protein() (SREBP-1c) in the liver(). Meanwhile, mitochondrial DNA and uncoupling protein() 2 (UCP2) were upregulated along with the increased expression() of mitochondrial biogenic promoters including liver() kinase B1 (LKB1), peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α), nuclear() factor()-erythroid-derived 2-like 2 (Nrf2), and mitochondrial transcription factor() A (Tfam), but did not change AMP-activated protein() kinase (AMPK) in liver(). The lipid droplets were decreased significantly after treatment() with 80 µM oleuropein for 24 h in OA-induced AML-12 cells. Furthermore, oleuropein significantly inhibited ACC mRNA expression() and upregulated LKB1, PGC-1α, and Tfam mRNA levels, as well as increasing the binding level of LKB1 to PGC-1α promoter in OA-induced cells. These findings indicate() that OLE-JGF reduces hepatic lipid deposition in HFD-fed mice, as well as the fact that OA-induced liver() cells may be partly() attributed to upregulation of the LKB1-PGC-1α axis, which mediates hepatic lipogenesis and mitochondrial biogenesis. Our study provides a scientific() basis() for the benefits and potential() use() of the J. grandiflorum flower as a food supplement() for the prevention() and treatment() of metabolic disease().


Assuntos
Carcinoma Hepatocelular , Fígado Gorduroso , Glucosídeos Iridoides , Jasminum , Leucemia Mieloide Aguda , Neoplasias Hepáticas , Doenças Metabólicas , Animais , Camundongos , Proteínas Serina-Treonina Quinases , Fígado Gorduroso/tratamento farmacológico , Proteínas Quinases Ativadas por AMP/genética , Acetil-CoA Carboxilase , RNA Mensageiro , Extratos Vegetais/farmacologia , Lipídeos
12.
Front Chem ; 10: 909651, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36034662

RESUMO

Cytokine-mediated inflammatory response is considered a cause of skin lesion in COVID-19 patients. Complanatuside is a flavonol glycoside isolated from Astragalus complanatus. Flavonoids from Astragalus complanatus were reported to have anti-inflammatory and anticancer activities but the potential protective effect of complanatuside on cytokine-induced inflammatory damage in skin keratinocytes is not known. The aim of this study is to explore the inhibitory effect of complanatuside on inflammation and its underlying mechanisms in skin epithelial HaCaT cells treated with inflammatory cytokines. The combination of IFN-γ, TNF-α, and IL-6 decreased cell viability, increased cell death, and pyroptosis in HaCaT cells. Treatment with complanatuside alleviated the effects of the cytokine combination on HaCaT cells. Complanatuside down-regulated pyroptosis related to NLRP3, GSDMD, and ASC. The effects of complanatuside were related to vast reductions in the levels of iNOS, COX-2, and ROS. Results of the present study indicate that complanatuside inhibited inflammation and protected the cells from inflammatory cell damage in HaCaT cells treated with the combination of IFN-γ, TNF-α, and IL-6. Complanatuside may be a promising candidate for inhibiting COVID-19 related skin inflammatory damage.

13.
Chem Commun (Camb) ; 58(64): 8966-8969, 2022 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-35861224

RESUMO

A mild, selective and redox-neutral Cp*Ir(III)- and Cp*Rh(III)-catalyzed C-H activation/annulation of salicylaldehydes with fluorovinyl tosylates is reported. The use of monofluorovinyl tosylate favors the synthesis of C2- and C3-substitution-free chromones via C-H activation/ß-F elimination/annulation, whereas difluorovinyl tosylate leads to the construction of C2-fluoroalkoxy chromones. Mild reaction conditions and good functional-group tolerance were observed. Further functionalization of the resulting chromones via halogenation, alkynylation, alkylation and hydrocyanation was successfully realized.


Assuntos
Cromonas , Aldeídos , Alquilação , Catálise , Estrutura Molecular
14.
Food Funct ; 13(16): 8662-8675, 2022 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-35904346

RESUMO

Callerya speciosa ("Niu Dali" in Chinese) is a well-known edible plant in Southeast China. C. speciosa roots contain a high level of polysaccharides, which have been reported to show multiple health-promoting effects. In the current study, the anti-obesity effects of a crude extract of C. speciosa polysaccharides (NP) and its underlying mechanisms of action are investigated. C57BL/6 mice were divided into three groups and fed either a standard diet or a high-fat diet (HFD). The HFD + NP group mice received oral administration of NP (100 mg per kg per day) every other day for 10 weeks. NP supplementation alleviated HFD-induced diabetic biomarkers including body weight gain, hyperlipidemia, liver steatosis, and adipocyte hypertrophy. Western blot and RT-PCR analyses revealed that NP inhibited hepatic de novo lipogenesis and adipogenesis (i.e. decreased expression of Srebp1c, Fas, Cebpα, and Pparγ), stimulated adipocyte lipolysis (enhanced mRNA expression of Hsl and Mgl), and attenuated HFD-induced hepatic inflammation (decreased expression of TNF-α and NF-κB p65). Furthermore, 16S rDNA and GC-MS analyses showed that NP supplementation restored the Firmicutes/Bacteroidetes proportion, elevated colon-derived SCFAs, especially acetic acid content, and increased the relative abundance of genera associated with SCFA production in HFD-fed mice. Findings from this study suggest that NP alleviated HFD-induced obesity in a mouse model, which was possibly due to its ameliorative effects on diet-induced gut dysbiosis. Polysaccharides from C. speciosa are promising prebiotics and they may be further developed as functional foods for the management of obesity.


Assuntos
Fabaceae , Microbioma Gastrointestinal , Doenças Metabólicas , Animais , Dieta Hiperlipídica/efeitos adversos , Disbiose/tratamento farmacológico , Disbiose/metabolismo , Doenças Metabólicas/tratamento farmacológico , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Obesos , Obesidade/tratamento farmacológico , Obesidade/etiologia , Obesidade/metabolismo , Polissacarídeos/farmacologia
15.
J Integr Plant Biol ; 64(6): 1181-1195, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35436387

RESUMO

Microtubules are dynamic cytoskeleton structures playing fundamental roles in plant responses to salt stress. The precise mechanisms by which microtubule organization is regulated under salt stress are largely unknown. Here, we report that Arabidopsis thaliana MICROTUBULE-DESTABILIZING PROTEIN 25 (MDP25; also known as PLASMA MEMBRANE-ASSOCIATED CATION-BINDING PROTEIN 1 (PCaP1)) helps regulate microtubule organization. Under salt treatment, elevated cytosolic Ca2+ concentration caused MDP25 to partially dissociate from the plasma membrane, promoting microtubule depolymerization. When Ca2+ signaling was blocked by BAPTA-AM or LaCl3 , microtubule depolymerization in wild-type and MDP25-overexpressing cells was slower, while there was no obvious change in mdp25 cells. Knockout of MDP25 improved microtubule reassembly and was conducive to microtubule integrity under long-term salt treatment and microtubule recovery after salt stress. Moreover, mdp25 seedlings exhibited a higher survival rate under salt stress. The presence microtubule-disrupting reagent oryzalin or microtubule-stabilizing reagent paclitaxel differentially affected the survival rates of different genotypes under salt stress. MDP25 promoted microtubule instability by affecting the catastrophe and rescue frequencies, shrinkage rate and time in pause phase at the microtubule plus-end and the depolymerization rate at the microtubule minus-end. These findings reveal a role for MDP25 in regulating microtubule organization under salt treatment by affecting microtubule dynamics.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Citosol/metabolismo , Microtúbulos/metabolismo , Estresse Salino , Plântula/metabolismo
16.
Bioorg Chem ; 122: 105714, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35276603

RESUMO

18ß-glycyrrhetinic acid (GA) is a well-known natural compound of oleanane-type triterpene and is found possessing antimicrobial and anti-inflammatory properties. Nonetheless, its relatively low bioactivity restricts its potential in pharmaceutical applications. To maximize the potential use of this natural herbal compound as antimicrobial and anti-inflammatory agents, the rational modification of GA to enhance its pharmacological activity with low toxicity and to understand the mechanism of action is critically essential. We reported herein the design and synthesis of a series of new GA derivatives. The antimicrobial activities of these new compounds were evaluated by inhibition zone test and minimum inhibitory concentration (MIC) assay. In addition, the anti-inflammatory activity was evaluated by LPS induced BV2 cells inflammation model and 12-O-tetradecanoyl phorbol-13-acetate (TPA) induced ear inflammation mice model. It was found that the derivatives functionalized with a di-substituted phenyl group at the 2-position of GA generally displayed high antimicrobial activity against Gram-positive bacteria (MIC down to 2.5 µM) and potent anti-inflammatory effects (inhibition of NO production up to 55%, comparable to dexamethasone). The in vitro and in vivo results also showed that GA-O-02 and GA-O-06 exert their anti-inflammatory activities through downregulation of NO, pro-inflammatory cytokines and chemokines (IL-1ß, IL-6, IL-12, TNF-α, MCP-1 and MIP-1α) and upregulation of anti-inflammatory cytokines (IL-10). The anti-inflammatory mechanism may involve the inhibition of NF-κB, MAPKs and PI3K/Akt related inflammatory signaling pathways and activation of Nrf2/HO-1 signaling pathway. The results demonstrated that GA-O-02 and GA-O-06 possess great application potential as potent antimicrobial and anti-inflammatory agents.


Assuntos
Ácido Glicirretínico , Fosfatidilinositol 3-Quinases , Animais , Antibacterianos , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Ácido Glicirretínico/análogos & derivados , Ácido Glicirretínico/farmacologia , Camundongos
17.
Bioorg Chem ; 113: 104981, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34020279

RESUMO

Oleanolic acid (OA) is a well-known natural product possessing many important pharmacological activities; however, its weak bioactivities significantly restrict the potential application in drug development. The structural modification of oleanolic acid is an effective mean to enhance its bioactivity with lower toxicity but it is challenging. In the present study, we systematically synthesized a series of new 11-oxooleanolic acid derivatives and evaluated their anti-inflammatory activities with a LPS induced BV2 cells inflammation model and a 12-O-tetradecanoyl phorbol-13-acetate (TPA) induced ear inflammation mice model. It was found that compounds 8 and 9 show more potent anti-inflammatory effects than OA and exhibit a low cytotoxicity. The possible mechanism of action was also investigated. The in vitro and in vivo results revealed that these two new 11-oxooleanolic acid derivatives may exert anti-inflammatory activities through the inhibition of NO, pro-inflammatory cytokines and chemokines (IL-1ß, IL-6, IL-12, TNF-α, MCP-1 and MIP-1α) and upregulation of anti-inflammatory cytokines (IL-10), which may be caused by inhibiting the activation of NF-κB, MAPKs and PI3K/Akt related inflammatory signaling pathways and the activation of Nrf2/HO-1 signaling pathway. The results suggest that these two 11-oxooleanolic acid derivatives may be potential candidates for further anti-inflammatory drug development and our study demonstrated an important and practical strategy for drug discovery through the rational modification of natural products.


Assuntos
Anti-Inflamatórios/farmacologia , Indóis/farmacologia , Ácido Oleanólico/farmacologia , Animais , Anti-Inflamatórios/síntese química , Anti-Inflamatórios/química , Sobrevivência Celular/efeitos dos fármacos , Citocinas/metabolismo , Relação Dose-Resposta a Droga , Indóis/síntese química , Indóis/química , Lipopolissacarídeos/antagonistas & inibidores , Lipopolissacarídeos/farmacologia , Camundongos , Estrutura Molecular , Óxido Nítrico/antagonistas & inibidores , Óxido Nítrico/biossíntese , Ácido Oleanólico/síntese química , Ácido Oleanólico/química , Relação Estrutura-Atividade
18.
Artigo em Inglês | MEDLINE | ID: mdl-32500833

RESUMO

The investigation of estrogen actions and their interaction characteristics with estrogen receptors (ERs) to induce unique functional features inside cells have allowed us to understand better the regulation of many vital physiological and cellular processes in humans. The biological effects of estrogenic ligands or compounds are mediated via estrogen receptors that act as the ligand-activated transcription factors. Therefore, the study on ligand-ER interaction properties and mechanism of ligand-ER complexes binding to specific estrogen response elements located in the promoters of target genes are very critical to realize the complicated biological process regulated by the endogenous estrogens. Several reviews have provided comprehensive and updated information on the influence of estrogen receptors in health and disease. However, the mechanism of estrogen-ERs binding and affinity aspects at molecular level is relatively under-investigated. This review thus aims to shed light on the significance of the binding kinetics of ligand-ER interactions because the information provide great assistance to define how a ligand or a drug can communicate with physiology to produce a desired therapeutic response. In addition, the most frequently used methodologies for the binding kinetic study are highlighted over the last decade.


Assuntos
Ligantes , Receptores de Estrogênio , Estrogênios , Estrona , Regulação da Expressão Gênica , Humanos , Cinética , Regiões Promotoras Genéticas , Elementos de Resposta , Transcrição Gênica
19.
Bioorg Chem ; 99: 103821, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32279036

RESUMO

A number of new fluorescent nucleic acid binding ligands were synthesized by utilizing the non-specific thiazole orange dye as the basic scaffold for molecular design. Under simple synthetic conditions, the molecular scaffold of thiazole orange bridged with a terminal side-group (phenol or methoxybenzene) becomes more flexible because the newly added ethylene bridge is relatively less rigid than the methylene of thiazole orange. It was found that these molecules showed better selectivity towards G-quadruplex DNA structure in molecular interactions with different type of nucleic acids. The difference in terms of induced DNA-ligand interaction signal, selectivity, and binding affinity of the ligands with the representative nucleic acids including single-stranded DNA, double-stranded DNA, telomere and promoter G4-DNA and ribosomal RNA were investigated. The position of the terminal methoxyl groups was found showing strong influence both on binding affinity and fluorescent discrimination among 19 nucleic acids tested. The ligand with a methoxyl group substituted at the meta-position of the styryl moiety exhibited the best fluorescent recognition performance towards telo21 G4-DNA. A good linear relationship between the induced fluorescent binding signal and the concentration of telo21 was obtained. The comparison of ligand-DNA interaction properties including equilibrium binding constants, molecular docking, G4-conformation change and stabilization ability for G4-structures was also conducted. Two cancer cell lines (human prostate cancer cell (PC3) and human hepatoma cell (hepG2)) were selected to explore the inhibitory effect of the ligands on the cancer cell growth. The IC50 values obtained in the MTT assay for the two cancer cells were found in the range of 3.4-10.8 µM.


Assuntos
Anisóis/química , Antineoplásicos/química , DNA/química , Corantes Fluorescentes/química , Fenóis/química , Anisóis/síntese química , Anisóis/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/farmacologia , Sítios de Ligação , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Corantes Fluorescentes/síntese química , Corantes Fluorescentes/farmacologia , Quadruplex G , Células Hep G2 , Humanos , Ligantes , Simulação de Acoplamento Molecular , Estrutura Molecular , Células PC-3 , Fenóis/síntese química , Fenóis/farmacologia , Relação Estrutura-Atividade
20.
Bioresour Technol ; 175: 245-53, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25459829

RESUMO

Biodrying was firstly used for post-treatment of anaerobically digested sludge (ADS) with wheat residues (WR) as bulking agents to improve its quality and reduce its amount. After 18days of biodrying, water was removed at a rate of 664.4gkg(-1) initial water at the typical ratio of ADS/WR. A separate aerobic incubation test showed that 8.11-14.84% of volatile solid (VS) was degraded in the ADS. The degradation of C- and H-containing materials (e.g., carboxylic acid) accounted for oxygen consumption and VS loss. The WR also showed strong biodegradability, and contributed approximately 86.01% of biogenerated heat during the process. Thermal balance analysis showed that the produced heat was primarily consumed through water evaporation and conductive transfer. 454 pyrosequencing implied the obvious succession from the anaerobic to aerobic microorganisms during the process. Some dominant Firmicutes, such as Clostridium and Bacillales, seemed to relate with organic matter degradation of the substrates.


Assuntos
Biodegradação Ambiental , Eliminação de Resíduos/métodos , Esgotos/química , Anaerobiose , Temperatura Alta , Consumo de Oxigênio , Esgotos/análise , Termodinâmica , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA