Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Chem Asian J ; 17(9): e202200109, 2022 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-35313090

RESUMO

Proton exchange membrane (PEM) is pivotal for proton exchange membrane fuel cells (PEMFCs). In the present work, a block copolymer with hydrophilic alkyl sulfonated side groups and hydrophobic flexible alkyl ether side groups, poly(5'-hexyloxy-1',4-biphenyl)-b-poly(2',4'-bispropoxysulfonate-1',4-biphenyl) (HBP-b-xBPSBP), is designed and synthesized by copolymerization of the hydrophilic and hydrophobic oligomers. The oligomers are synthesized via a Pd-catalyzed Suzuki cross-coupling of 1,3-dibromo-5-hexyloxybenzene, and 3,3'-[(4,6-dibromo-1,3-phenylene)bis(oxy)]bis(propane-1-sulfonate) or 1,4-bis(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)benzene. The good solubility and film-forming characteristics are achieved via the introduction of flexible hexyloxy side groups, and high ion exchange capacity (IEC) is achieved via the introduction of high density of alkyl sulfonated side groups. The HBP-b-0.5BPSBP has the highest IEC of 3.17 mmol/g, the highest proton conductivity of 43.5 mS/cm at 95 °C and 90% relative humidity (RH) and low methanol permeability of 6.45×10-7  cm2 /s. Meanwhile, crosslinked HBP-b-xBPSBP exhibits promising water uptake, swelling ratio and low methanol permeability. These characteristics are attributed to the crosslinked structure and the hydrophilic/hydrophobic nanophase separation morphology promoted by the poly(m-phenylene) main chains, flexible alkyl ether groups, and alkyl sulfonated side groups.


Assuntos
Metanol , Prótons , Compostos de Bifenilo , Éter , Éteres/química , Troca Iônica
2.
RSC Adv ; 9(32): 18459-18466, 2019 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-35515262

RESUMO

A tetrel bond was characterized in the complexes of 1,4-diazabicyclo[2.2.2]octane (DABCO) with TH3X (T = C, Si, Ge; X= -Me, -H, -OH, -NH2, -F, -Cl, -Br, -I, -CN, -NO2). DABCO engages in a weak tetrel bond with CH3X but a stronger one with SiH3X and GeH3X. SiH3X is favorable to bind with DABCO relative to GeH3X, inconsistent with the magnitude of the σ-hole on the tetrel atom. The methyl group in the tetrel donor weakens the tetrel bond but an enhancing effect is found for the other substituents, particularly -NO2. The substitution effect is also related to the nature of the tetrel atom. The halogen substitution from F to I has a weakening effect in the CH3X complex but an enhancing effect in the SiH3X complex and a negligible effect in the GeH3X complex. The above abnormal results found in these complexes can be partly attributed to the charge transfer from the lone pair on the nitrogen atom of DABCO into the anti-bonding orbital σ*(T-X) of TH3X. The stability of both SiH3X and GeH3X complexes is primarily controlled by electrostatic interactions and polarization.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA