Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Environ Int ; 178: 108099, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37481952

RESUMO

Organic and inorganic substances coexist in the livers of marine mammals and may correlate with one another; however, their coexistence mechanisms and relevant key features remain largely unknown. In this study, temporal variations (2011-2021) in the concentrations of nine trace elements and 19 per- and polyfluoroalkyl substances (PFASs) in the livers of Indo-Pacific humpback dolphins (Sousa chinensis) and finless porpoises (Neophocaena phocaenoides) were investigated. Interannual Cd in dolphins increased significantly whereas Pb concentrations decreased over the past decade (p < 0.05). Interannual levels of seven and four PFASs in dolphins and porpoises decreased significantly with time (p < 0.05). By further extending the timescale to 1993-2021, the sensitivity of trace elements to annual change further increased, whereas the sensitivity of PFASs remained relatively stable. Cu levels, similar to the majority of PFASs, were negatively correlated with the body length of the studied cetaceans, which led to positive correlations of Cu with six long-chain perfluoroalkyl carboxylic acids, perfluorodecane sulfonic acid, and perfluoroethylcyclohexane sulfonic acid. The concentrations of trace elements in the cetacean liver were closely correlated with cetacean sex, species, and body length, whereas PFAS concentration was responsive to time-related features such as stranded season and year. By further employing a machine learning method, we demonstrated that body length and a time-related factor (year) played a crucial role in predicting the concentrations of certain trace elements and PFASs, respectively, particularly Cu and perfluoroheptanoic acid.


Assuntos
Golfinhos , Fluorocarbonos , Toninhas , Oligoelementos , Poluentes Químicos da Água , Animais , Oligoelementos/análise , Monitoramento Ambiental/métodos , Poluentes Químicos da Água/análise
2.
Environ Sci Technol ; 57(25): 9298-9308, 2023 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-37295780

RESUMO

Halogenated flame retardants (HFRs) are a large class of chemical additives intended to meet flammability safety requirements, and at present, they are ubiquitous in the environment. Herein, we conducted the target analysis and suspect screening of legacy and novel HFRs and their metabolites in the blubber of finless porpoises (Neophocaena phocaenoides; n = 70) and Indo-Pacific humpback dolphins (Sousa chinensis; n = 35) stranded in Hong Kong, a coastal city in the South China Sea, between 2013 and 2020. The average concentrations of total target HFRs (ΣHFRs) were 6.48 × 103 ± 1.01 × 104 and 1.40 × 104 ± 1.51 × 104 ng/g lipid weight in porpoises and dolphins, respectively. Significant decreasing temporal trends were observed in the concentrations of tetra-/penta-/hexa-bromodiphenyl ethers (tetra-/penta-/hexa-BDEs) in adult porpoises stranded from 2013-2015 to 2016-2020 (p < 0.05), probably because of their phasing out in China. No significant difference was found for the concentrations of decabromodiphenyl ether and hexabromocyclododecane, possibly due to their exemption from the ban in China until 2025 and 2021, respectively. Eight brominated compounds were additionally identified via suspect screening. A positive correlation was found between the concentrations of tetra-BDE and methyl-methoxy-tetra-BDE (Me-MeO-tetra-BDE) (p < 0.05), indicating that the metabolism of tetra-BDE may be a potential source of Me-MeO-tetra-BDE in marine mammals.


Assuntos
Golfinhos , Retardadores de Chama , Toninhas , Animais , Hong Kong , Retardadores de Chama/análise , Toninhas/metabolismo , Golfinhos/metabolismo , China , Éteres Difenil Halogenados/análise , Monitoramento Ambiental/métodos
3.
Environ Sci Technol ; 57(22): 8355-8364, 2023 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-37220884

RESUMO

The ban/elimination of legacy per- and polyfluoroalkyl substances (PFASs) has led to a dramatic increase in the production and use of various emerging PFASs over the past decade. However, trophodynamics of many emerging PFASs in aquatic food webs remain poorly understood. In this study, samples of seawaters and marine organisms including 15 fish species, 21 crustacean species, and two cetacean species were collected from the northern South China Sea (SCS) to investigate the trophic biomagnification potential of legacy and emerging PFASs. Bis(trifluoromethylsulfonyl)imide was found in seawater via suspect screening (concentration up to 1.50 ng/L) but not in the biota, indicating its negligible bioaccumulation potential. A chlorinated perfluorooctane sulfonate (PFOS) analytical interfering compound was identified with a predicted formula of C14H23O5SCl6- (most abundant at m/z = 514.9373). Significant trophic magnification was observed for 22 PFASs, and the trophic magnification factors of cis- and trans-perfluoroethylcyclohexane sulfonate isomers (1.92 and 2.25, respectively) were reported for the first time. Perfluorohexanoic acid was trophic-magnified, possibly attributed to the PFAS precursor degradation. The hazard index of PFOS was close to 1, implying a potential human health risk via dietary exposure to PFASs in seafood on the premise of continuous PFAS discharge to the SCS.


Assuntos
Ácidos Alcanossulfônicos , Fluorocarbonos , Animais , Humanos , Cadeia Alimentar , Ácidos Alcanossulfônicos/análise , Água do Mar , China , Fluorocarbonos/análise
4.
Environ Sci Technol ; 57(11): 4471-4480, 2023 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-36877486

RESUMO

The increasing use of chiral pharmaceuticals has led to their widespread presence in the environment. However, their toxicokinetics have rarely been reported. Therefore, the tissue-specific uptake and depuration kinetics of two pairs of pharmaceutical enantiomers, S-(-)-metoprolol versus R-(+)-metoprolol and S-(+)-venlafaxine versus R-(-)-venlafaxine, were studied in marine medaka (Oryzias melastigma) during a 28-day exposure and 14-day clearance period. The toxicokinetics of the studied pharmaceuticals, including uptake and depuration rate constants, depuration half-life (t1/2), and bioconcentration factor (BCF), were reported for the first time. The whole-fish results demonstrated a higher S- than R-venlafaxine bioaccumulation potential, whereas no significant difference was observed between S- and R-metoprolol. O-desmethyl-metoprolol (ODM) and α-hydroxy-metoprolol (AHM) were the main metoprolol metabolites identified by suspect screening, and the ratios of ODM to AHM were 3.08 and 1.35 for S- and R-metoprolol, respectively. N,O-Didesmethyl-venlafaxine (NODDV) and N-desmethyl-venlafaxine (NDV) were the main venlafaxine metabolites, and the ratios of NODDV to NDV were 1.55 and 0.73 for S- and R-venlafaxine, respectively. The highest tissue-specific BCFs of the four enantiomers were all found in the eyes, meriting in-depth investigation.


Assuntos
Oryzias , Animais , Cloridrato de Venlafaxina , Metoprolol/metabolismo , Distribuição Tecidual , Preparações Farmacêuticas
5.
Sci Total Environ ; 846: 157453, 2022 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-35863582

RESUMO

Per- and polyfluoroalkyl substances (PFASs) are a diverse group of widely used anthropogenic chemicals that are environmentally persistent and bioaccumulative, especially in aquatic ecosystem. The heavily industrialized and urbanized Greater Bay Area in China represents a notable contamination source for PFASs, which may potentially influence the health of local oysters as a keystone species in local ecosystems and a popular seafood. In this study, samples of oysters and their surrounding waters were collected from the littoral zones of the Pearl River Estuary (PRE), China during winter 2020, where 44 PFASs, including 19 perfluoroalkyl acids (PFAAs), 8 emerging PFASs, and 17 PFAA precursors (or intermediates), were analyzed. Total PFAS concentrations ranged 13.8-58.8 ng/L in the dissolved phase, 3.60-11.2 ng/g dry weight (dw) in the suspended particulate matter (SPM), and 0.969-1.98 ng/g dw in the oysters. Most short-chain PFASs were present in the dissolved phase (>95%), while long-chain PFASs generally showed higher concentrations in the SPM. Log field-based bioconcentration factors (BCFs) of long-chain PFASs increased linearly (r = 0.95, p < 0.01) with increasing estimated log membrane-water (Dmw) and protein-water (Dpw) distribution coefficients. Perfluorohexanoic acid (PFHxA) and perfluoroheptanoic acid (PFHpA) exhibited higher measured BCFs than those estimated by their Dmw and Dpw. Considering the widespread occurrence of their precursors, the contribution of precursor transformation was likely to be a significant source of PFHxA and PFHpA. Oysters from the PRE littoral zones posed low risks to human health associated with PFAS consumption, which might be underestimated due to limited toxicity data available for PFAA precursors and emerging PFASs. This study sheds light on the practicality of applying oysters as biomonitors for timely PFAS monitoring in coastal environments.


Assuntos
Ácidos Alcanossulfônicos , Fluorocarbonos , Ostreidae , Poluentes Químicos da Água , Ácidos Alcanossulfônicos/análise , Animais , Bioacumulação , China , Ecossistema , Monitoramento Ambiental , Fluorocarbonos/análise , Humanos , Material Particulado/análise , Água , Poluentes Químicos da Água/análise
6.
J Hazard Mater ; 437: 129377, 2022 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-35738172

RESUMO

Liquid crystal monomers (LCMs), commonly used in screens of electronic devices, have recently been identified as a group of emerging chemicals of concern associated with e-waste. They are potentially persistent, bioaccumulative, and toxic substances, and may pose a threat to the marine ecosystem. The Pearl River Estuary (PRE) receives organic contaminants discharged from the Pearl River Delta region, where primitive handling of e-waste is widespread. However, information on the pollution status of LCMs in the PRE is absent. Herein, a rapid and robust analytical method was established using ultrasonic extraction, solid phase extraction cleanup, and GC-Orbitrap-MS analysis. The spatial distribution of 39 target LCMs was investigated in 45 surface sediment samples from the PRE. Ten LCMs were detected, with ΣLCMs ranged from 0.9 to 31.1 ng/g dry weight. Our results demonstrated a widespread occurrence of LCMs in the sediments of the PRE, and a gradient of their contamination from inshore to offshore regions, indicating land-based origins. Our reported ΣLCMs concentrations were relatively higher compared to many other legacy and emerging pollutants found in the same investigated area. Preliminary risk assessment showed 3VbcH, Pe3bcH and tFMeO-3bcHP might be the top 3 risk contributors in the PRE. Further investigation on the ecological impact of LCMs on marine benthic ecosystems, as well as identification of their sources and control measures are warranted.


Assuntos
Resíduo Eletrônico , Cristais Líquidos , Poluentes Químicos da Água , China , Ecossistema , Resíduo Eletrônico/análise , Monitoramento Ambiental/métodos , Estuários , Sedimentos Geológicos/química , Poluentes Químicos da Água/análise
7.
Environ Sci Technol ; 56(10): 6182-6191, 2022 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-35438980

RESUMO

Restrictions on legacy per- and polyfluoroalkyl substances (PFASs) have led to the widespread use of emerging PFASs. However, their toxicokinetics have rarely been reported. Here, tissue-specific uptake and depuration kinetics of perfluoroethylcyclohexanesulfonate (PFECHS) and 6:2 and 8:2 chlorinated polyfluoroalkyl ether sulfonates (Cl-PFESAs) were studied in marine medaka (Oryzias melastigma). The fish were exposed to these substances for 28 days (0.2 µg/L), followed by a clearance period of 14 days. The depuration constant (kd) of PFECHS [0.103 ± 0.009 day-1 (mean ± standard deviation)] was reported for the first time. Among the six studied tissues, the highest concentrations of 6:2 Cl-PFESA, 8:2 Cl-PFESA, and PFECHS were found in the liver [1540, 1230, and 188 ng (g of wet weight)-1, respectively] on day 28 while the longest residence times were found in the eyes (t1/2 values of 21.7 ± 4.3, 23.9 ± 1.5, and 17.3 ± 0.8 days, respectively). No significant positive correlation was found between the bioconcentration factors of the studied PFASs and the phospholipid or protein contents in different tissues of the studied fish. Potential metabolites of Cl-PFESAs, i.e., their hydrogen-substituted analogues (H-PFESAs), were identified by time-of-flight mass spectrometry. However, the biotransformation rates were low (<0.19%), indicating the poor capacity of marine medaka to metabolize Cl-PFESAs to H-PFESAs.


Assuntos
Ácidos Alcanossulfônicos , Fluorocarbonos , Oryzias , Alcanossulfonatos/análise , Ácidos Alcanossulfônicos/análise , Animais , China , Éter , Éteres , Fluorocarbonos/análise , Cinética
8.
Environ Sci Technol ; 55(2): 1045-1056, 2021 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-33395277

RESUMO

Per- and polyfluoroalkyl substances (PFASs) have been manufactured and widely used for over 60 years. Currently, there are thousands of marketed PFASs, but only dozens of them are routinely monitored. This work involved target, nontarget, and suspect screening of PFASs in the liver of Indo-Pacific humpback dolphin (Sousa chinensis) and finless porpoise (Neophocaena phocaenoides), two resident marine mammals in the South China Sea, stranded between 2012 and 2018. Among the 21 target PFASs, perfluorooctane sulfonate and 6:2 chlorinated polyfluoroalkyl ether sulfonate (6:2 Cl-PFESA) predominated in the samples, accounting for 46 and 30% of the total PFASs, respectively. Significantly higher total target PFAS concentrations (p < 0.05) were found in dolphin liver samples [3.23 × 103 ± 2.63 × 103 ng/g dry weight (dw)] than in porpoise liver samples (2.63 × 103 ± 1.10 × 103 ng/g dw). Significant increasing temporal trends (p < 0.05) were found in the concentrations of two emerging PFASs, perfluoroethylcyclohexane sulfonate and 2,3,3,3-tetrafluoro-2-propanoate in porpoises, indicating increasing pollution by these emerging PFASs. Forty-four PFASs from 9 classes were additionally identified by nontarget and suspect screening, among which 15 compounds were reported for the first time in marine mammals. A primary risk assessment showed that the emerging PFAS 6:2 Cl-PFESA could have possible adverse effects in terms of reproductive injury potential on most of the investigated cetaceans.


Assuntos
Ácidos Alcanossulfônicos , Golfinhos , Fluorocarbonos , Toninhas , Poluentes Químicos da Água , Animais , China , Monitoramento Ambiental , Fluorocarbonos/análise , Poluentes Químicos da Água/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA