Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Pharmaceuticals (Basel) ; 17(3)2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38543123

RESUMO

Mutant isocitrate dehydrogenase 1 (mIDH1) is a common driving factor in acute myeloid leukemia (AML), with the R132 mutation accounting for a high proportion. The U.S. Food and Drug Administration (FDA) approved Ivosidenib, a molecular entity that targets IDH1 with R132 mutations, as a promising therapeutic option for AML with mIDH1 in 2018. It was of concern that the occurrence of disease resistance or recurrence, attributed to the IDH1 R132C/S280F second site mutation, was observed in certain patients treated with Ivosidenib within the same year. Furthermore, it should be noted that most mIDH1 inhibitors demonstrated limited efficacy against mutations at this specific site. Therefore, there is an urgent need to investigate novel inhibitors targeting mIDH1 for combating resistance caused by IDH1 R132C/S280F mutations in AML. This study aimed to identify novel mIDH1 R132C/S280F inhibitors through an integrated strategy of combining virtual screening and dynamics simulations. First, 2000 hits were obtained through structure-based virtual screening of the COCONUT database, and hits with better scores than -10.67 kcal/mol were obtained through molecular docking. A total of 12 potential small molecule inhibitors were identified through pharmacophore modeling screening and Prime MM-GBSA. Dynamics simulations were used to study the binding modes between the positive drug and the first three hits and IDH1 carrying the R132C/S280F mutation. RMSD showed that the four dynamics simulation systems remained stable, and RMSF and Rg showed that the screened molecules have similar local flexibility and tightness to the positive drug. Finally, the lowest energy conformation, hydrogen bond analysis, and free energy decomposition results indicate that in the entire system the key residues LEU120, TRP124, TRP267, and VAL281 mainly contribute van der Waals forces to the interaction, while the key residues VAL276 and CYS379 mainly contribute electrostatic forces.

2.
Pharmacol Res ; 199: 107034, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38070793

RESUMO

The incidence and mortality of lung cancer are on the rise worldwide. However, the benefit of clinical treatment in lung cancer is limited. Owning to important sources of drug development, natural products have received constant attention around the world. Main ingredient polysaccharides in natural products have been found to have various activities in pharmacological research. In recent years, more and more scientists are looking for the effects and mechanisms of different natural product polysaccharides on lung cancer. In this review, we focus on the following aspects: First, natural product polysaccharides have been discovered to directly suppress the growth of lung cancer cells, which can be effective in limiting tumor progression. Additionally, polysaccharides have been considered to enhance immune function, which can play a pivotal role in fighting lung cancer. Lastly, polysaccharides can improve the efficacy of drugs in lung cancer treatment by regulating the gut microbiota. Overall, the research of natural product polysaccharides in the treatment of lung cancer is a promising area that has the potential to lead to new clinical treatments. With better understanding, natural product polysaccharides have the potential to become important components of future lung cancer treatments.


Assuntos
Produtos Biológicos , Microbioma Gastrointestinal , Neoplasias Pulmonares , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Produtos Biológicos/farmacologia , Produtos Biológicos/uso terapêutico , Polissacarídeos/farmacologia , Polissacarídeos/uso terapêutico
3.
Diabetes ; 73(3): 497-510, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38127948

RESUMO

Aldose reductase 2 (ALR2), an activated enzyme in the polyol pathway by hyperglycemia, has long been recognized as one of the most promising targets for complications of diabetes, especially in diabetic peripheral neuropathy (DPN). However, many of the ALR2 inhibitors have shown serious side effects due to poor selectivity over aldehyde reductase (ALR1). Herein, we describe the discovery of a series of benzothiadiazine acetic acid derivatives as potent and selective inhibitors against ALR2 and evaluation of their anti-DPN activities in vivo. Compound 15c, carrying a carbonyl group at the 3-position of the thiadiazine ring, showed high potent inhibition against ALR2 (IC50 = 33.19 nmol/L) and ∼16,109-fold selectivity for ALR2 over ALR1. Cytotoxicity assays ensured the primary biosafety of 15c. Further pharmacokinetic assay in rats indicated that 15c had a good pharmacokinetic feature (t1/2 = 5.60 h, area under the plasma concentration time curve [AUC(0-t)] = 598.57 ± 216.5 µg/mL * h), which was superior to epalrestat (t1/2 = 2.23 h, AUC[0-t] = 20.43 ± 3.7 µg/mL * h). Finally, in a streptozotocin-induced diabetic rat model, 15c significantly increased the nerve conduction velocities of impaired sensory and motor nerves, achieved potent inhibition of d-sorbitol production in the sciatic nerves, and significantly increased the paw withdrawal mechanical threshold. By combining the above investigations, we propose that 15c might represent a promising lead compound for the discovery of an antidiabetic peripheral neuropathy drug.


Assuntos
Diabetes Mellitus , Neuropatias Diabéticas , Hiperglicemia , Ratos , Animais , Neuropatias Diabéticas/tratamento farmacológico , Aldeído Redutase/metabolismo , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/uso terapêutico , Tiazidas , Benzotiadiazinas
4.
Nutrients ; 15(16)2023 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-37630743

RESUMO

Diabetic nephropathy (DN) is a worldwide health problem with increasing incidence. Diosgenin (DIO) is a natural active ingredient extracted from Chinese yams (Rhizoma dioscoreae) with potential antioxidant, anti-inflammatory, and antidiabetic effects. However, the protective effect of DIO on DN is still unclear. The present study explored the mitigating effects and underlying mechanisms of DIO on DN in vivo and in vitro. In the current study, the DN rats were induced by a high-fat diet and streptozotocin and then treated with DIO and metformin (Mef, a positive control) for 8 weeks. The high-glucose (HG)-induced HK-2 cells were treated with DIO for 24 h. The results showed that DIO decreased blood glucose, biomarkers of renal damage, and renal pathological changes with an effect comparable to that of Mef, indicating that DIO is potential active substance to relieve DN. Thus, the protective mechanism of DIO on DN was further explored. Mechanistically, DIO improved autophagy and mitophagy via the regulation of the AMPK-mTOR and PINK1-MFN2-Parkin pathways, respectively. Knockdown of CaMKK2 abolished AMPK-mTOR and PINK1-MFN2-Parkin pathways-mediated autophagy and mitophagy. Mitophagy and mitochondrial dynamics are closely linked physiological processes. DIO also improved mitochondrial dynamics through inhibiting fission-associated proteins (DRP1 and p-DRP1) and increasing fusion proteins (MFN1/2 and OPA1). The effects were abolished by CaMKK2 and PINK1 knockdown. In conclusion, DIO ameliorated DN by enhancing autophagy and mitophagy and by improving mitochondrial dynamics in a CaMKK2-dependent manner. PINK1 and MFN2 are proteins that concurrently regulated mitophagy and mitochondrial dynamics.


Assuntos
Diabetes Mellitus , Nefropatias Diabéticas , Diosgenina , Animais , Ratos , Mitofagia , Nefropatias Diabéticas/tratamento farmacológico , Proteínas Quinases Ativadas por AMP , Dinâmica Mitocondrial , Autofagia , Diosgenina/farmacologia , Diosgenina/uso terapêutico
5.
Nutrients ; 15(9)2023 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-37432297

RESUMO

Diosgenin (DIO) is a dietary steroid sapogenin possessing multiple biological functions, such as the amelioration of diabetes. However, the remission effect of DIO on diabetic nephropathy (DN) underlying oxidative stress and cell apoptosis remains unclear. Here, the effect of DIO on ROS generation and its induced cell apoptosis was studied in vitro and in vivo. Renal proximal tubular epithelial (HK-2) cells were treated with DIO (1, 2, 4 µM) under high glucose (HG, 30 mM) conditions. DN rats were induced by a high-fat diet combined with streptozotocin, followed by administration of DIO for 8 weeks. Our data suggested that DIO relieved the decline of HK-2 cell viability and renal pathological damage in DN rats. DIO also relieved ROS (O2- and H2O2) production. Mechanistically, DIO inhibited the expression of NOX4 and restored mitochondrial respiratory chain (MRC) complex I-V expressions. Further, DIO inhibited mitochondrial apoptosis by ameliorating mitochondrial membrane potential (MtMP) and down-regulating the expressions of CytC, Apaf-1, caspase 3, and caspase 9, while up-regulating Bcl2 expression. Moreover, the ER stress and its associated cell apoptosis were inhibited through decreasing PERK, p-PERK, ATF4, IRE1, p-CHOP, and caspase 12 expressions. Collectively, DIO inhibited ROS production by modulating NOX4 and MRC complexes, which then suppressed apoptosis regulated by mitochondria and ER stress, thereby attenuating DN.


Assuntos
Apoptose , Neuropatias Diabéticas , Humanos , Linhagem Celular , Apoptose/efeitos dos fármacos , Diosgenina/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Respiração Celular/efeitos dos fármacos , Neuropatias Diabéticas/metabolismo , Animais , Ratos , Estresse do Retículo Endoplasmático , Ratos Sprague-Dawley , Masculino , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo
6.
Artigo em Inglês | MEDLINE | ID: mdl-37260523

RESUMO

Background: With the continuous advancement of clinical application and experimental research of JTP, the application prospect of JTP in nervous system diseases and metabolic diseases is becoming increasingly clear. Jiaotai Pill (JTP) is a traditional Chinese medicine formula for insomnia, consisting of Coptidis rhizoma and Cinnamomi cortex, which dates back to Han Shi Yi Tong in the Ming Dynasty of China. Objective: Based on the brain-gut axis theory, this paper aims to explore the potential mechanism of JTP in the intervention of insomnia by using intestinal microbiome and metabolomics technology, taking the animal model of insomnia as the research object, so as to provide experimental basis for its further application and research. Methods: The insomnia mouse model was induced by intraperitoneal injection of para-chlorophenylalanine (PCPA). The clinical equivalent dose of JTP was administered by gavage for one week. The efficacy of JTP was evaluated by behavioral tests, serum biochemical detection, and brain histomorphological observation. The contents of cecum were analyzed by microbiomics and metabolomics. Results: The results show that insomnia caused by PCPA led to daytime dysfunction, higher HPA axis hormone levels, and morphologically impaired hippocampus. JTP reversed these anomalies. Omics research indicates that JTP significantly reduced gut α diversity; at the phylum level, JTP reduced the relative abundance of Firmicutes, Deferribacterota, Cyanobacteria, and Actinobacteriota and increased the relative abundance of Verrucomicrobiota, Proteobacteria, and Desulfobacterota. At the genus level, JTP reduced the relative abundance of Muribaculaceae, Lachnospiraceae_NK4A136_group, Alistipes, Colidextribacter, Muribaculum, and Mucispirillum and increased the relative abundance of Bacteroides and Akkermansia. JTP also reversed the activation of the linoleic acid metabolism pathway induced by insomnia. The combined analysis of omics suggests that JTP may play a role by regulating the inflammatory state of the body. Further gene expression analysis of brain tissue confirmed this. Conclusions: We hypothesize that JTP may achieve insomnia relief by eliminating inflammation-causing bacteria in the gut and reducing inflammation levels through the brain-gut axis, pointing to potential targets and pathways for future research on JTP.

7.
Bioorg Chem ; 130: 106225, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36335650

RESUMO

Enasidenib (AG-221) is the only approved IDH2 inhibitor, clinical study found Enasidenib have some side-effects. In this work, we synthesized series of novel s-triazine derivatives, and the in vitro and in vivo activity of anti-AML has been studied using AM7577 model. The cell activity found Ta and Th showed excellent inhibition to AM7577. We further used the HuKemia Acute Leukemia xenograft model to investigate the in vivo efficacy of compounds Ta and Th, compared with AG-221, although Ta and Th can't reduce the 2-HG level obviously, those two compounds can prolong the survival of rats. The research can expand the structure of novel IDH2 inhibitors and provide useful information for further research of novel AML drugs.


Assuntos
Isocitrato Desidrogenase , Leucemia Mieloide Aguda , Humanos , Ratos , Animais , Mutação , Aminopiridinas/farmacologia , Triazinas/farmacologia , Triazinas/uso terapêutico , Leucemia Mieloide Aguda/tratamento farmacológico
8.
Crit Rev Food Sci Nutr ; : 1-25, 2022 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-36537328

RESUMO

Postbiotics are defined as "preparation of inanimate microorganisms and/or their components that confers a health benefit on the host". Postbiotics have unique advantages over probiotics, such as stability, safety, and wide application. Although postbiotics are research hotspots, the research on them is still very limited. This review provides comprehensive information on the scope of postbiotics, the preparation methods of inanimate microorganisms, and the application and mechanisms of postbiotics in metabolic syndrome (MetS). Furthermore, the application trends of postbiotics in the food industry are reviewed. It was found that postbiotics mainly include inactivated microorganisms, microbial lysates, cell components, and metabolites. Thermal treatments are the main methods to prepare inanimate microorganisms as postbiotics, while non-thermal treatments, such as ionizing radiation, ultraviolet light, ultrasound, and supercritical CO2, show great potential in postbiotic preparation. Postbiotics could ameliorate MetS through multiple pathways including the modulation of gut microbiota, the enhancement of intestinal barrier, the regulation of inflammation and immunity, and the modulation of hormone homeostasis. Additionally, postbiotics have great potential in the food industry as functional food supplements, food quality improvers, and food preservatives. In addition, the SWOT analyses showed that the development of postbiotics in the food industry exists both opportunities and challenges.

9.
Nutrients ; 14(23)2022 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-36501024

RESUMO

Diosgenin (DIO) is a dietary and phytochemical steroidal saponin representing multiple activities. The present study investigated the protective effect of DIO on type II diabetes-associated nonalcoholic fatty liver disease (D-NAFLD). The rat model was established by high-fat diet and streptozotocin injection and then administered DIO for 8 weeks. The results showed that DIO reduced insulin resistance index, improved dyslipidemia, and relieved pancreatic damage. DIO decreased hepatic injury markers, including aspartate aminotransferase (AST) and alanine aminotransferase (ALT). H&E staining showed that DIO relieved hepatic lipid deposition. Mechanistically, DIO inhibited hepatic de novo lipogenesis (DNL) and increased fatty acid ß-oxidation (FAO) through regulation of the AMPK-ACC/SREBP1 pathway. Endoplasmic reticulum (ER) stress was inhibited by DIO through regulation of PERK and IRE1 arms, which may then inhibit DNL. DIO also decreased reactive oxygen species (ROS) and enhanced the antioxidant capacity via an increase in Superoxide dismutase (SOD), Catalase (CAT), and Glutathione peroxidase (GPx) activities. The mitochondria are the site for FAO, and ROS can damage mitochondrial function. DIO relieved mitochondrial fission and fusion disorder by inhibiting DRP1 and increasing MFN1/MFN2 expressions. Mitochondrial apoptosis was then inhibited by DIO. In conclusion, the present study suggests that DIO protects against D-NAFLD by inhibiting DNL and improving FAO and mitochondrial function.


Assuntos
Diabetes Mellitus Tipo 2 , Diosgenina , Hepatopatia Gordurosa não Alcoólica , Ratos , Animais , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/metabolismo , Diosgenina/farmacologia , Diosgenina/uso terapêutico , Diabetes Mellitus Tipo 2/metabolismo , Lipogênese , Fígado/metabolismo , Dieta Hiperlipídica/efeitos adversos , Mitocôndrias/metabolismo , Ácidos Graxos/metabolismo
10.
Int J Mol Sci ; 23(19)2022 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-36232809

RESUMO

Evodiamine (EVO) and rutaecarpine (RUT) are the main active compounds of the traditional Chinese medicinal herb Evodia rutaecarpa. Here, we fully optimized the molecular geometries of EVO and RUT at the B3LYP/6-311++G (d, p) level of density functional theory. The natural population analysis (NPA) charges, frontier molecular orbitals, molecular electrostatic potentials, and the chemical reactivity descriptors for EVO and RUT were also investigated. Furthermore, molecular docking, molecular dynamics simulations, and the analysis of the binding free energies of EVO and RUT were carried out against the anticancer target topoisomerase 1 (TOP1) to clarify their anticancer mechanisms. The docking results indicated that they could inhibit TOP1 by intercalating into the cleaved DNA-binding site to form a TOP1−DNA−ligand ternary complex, suggesting that they may be potential TOP1 inhibitors. Molecular dynamics (MD) simulations evaluated the binding stability of the TOP1−DNA−ligand ternary complex. The calculation of binding free energy showed that the binding ability of EVO with TOP1 was stronger than that of RUT. These results elucidated the structure−activity relationship and the antitumor mechanism of EVO and RUT at the molecular level. It is suggested that EVO and RUT may be potential compounds for the development of new anticancer drugs.


Assuntos
Antineoplásicos , Evodia , Antineoplásicos/farmacologia , Evodia/química , Alcaloides Indólicos , Ligantes , Simulação de Acoplamento Molecular , Quinazolinas , Quinazolinonas
11.
Org Lett ; 24(41): 7637-7642, 2022 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-36218287

RESUMO

Herein, we report a method that uses antifungal tavaborole as a co-catalyst for direct α-C-H alkylation of structurally diverse alcohols through photoredox catalysis. The protocol features mild conditions, remarkable scope, and wide functional group tolerance, which allows for the construction of a wide array of highly functionalized alcohols, including homoserine derivatives and C-glycosyl amino acids. We also demonstrate the synthetic applications of this methodology to the late-stage functionalization of pharmaceuticals and natural products.


Assuntos
Álcoois , Produtos Biológicos , Álcoois/química , Homosserina , Antifúngicos , Oxirredução , Catálise , Alquilação , Aminoácidos/química , Preparações Farmacêuticas
12.
Food Funct ; 13(20): 10574-10586, 2022 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-36155608

RESUMO

Linarin is a natural flavonoid compound found in Chrysanthemum indicum, Mentha species and other plants with various biological activities. The study aimed to investigate the protective effect of linarin supplementation on dextran sulfate sodium (DSS)-induced colitis in C57BL/6J mice and its potential mechanisms. The results showed that doses of linarin at 25 and 50 mg kg-1 day-1 alleviated the DSS-induced histopathological damage, and improved the mucosal layer and intestinal barrier function. Importantly, Linarin significantly suppressed the levels of myeloperoxidase activity and pro-inflammatory cytokines (IL-6, TNF-α, IFN-γ and IL-1ß) in the colon, and enhanced the mRNA level of anti-inflammatory cytokine (IL-10). Moreover, 50 mg kg-1 day-1 linarin reversed the gut microbiota damaged by DSS, including Alistipes, Rikenella and Clostridia UCG-014_norank. Linarin also partly increased the relative abundance of short-chain fatty acids (SCFAs)-producing bacteria, including Lactobacillus, Roseburia, Parabacteroides and Blautia, and elevated the contents of SCFAs. Collectively, linarin attenuates DSS-induced colitis in mice, suggesting that linarin may be a promising nutritional strategy for reducing inflammatory bowel disease.


Assuntos
Colite , Microbioma Gastrointestinal , Animais , Anti-Inflamatórios/farmacologia , Colite/induzido quimicamente , Colite/tratamento farmacológico , Colite/patologia , Colo/microbiologia , Citocinas/genética , Citocinas/farmacologia , Sulfato de Dextrana/efeitos adversos , Modelos Animais de Doenças , Ácidos Graxos Voláteis/farmacologia , Flavonoides/farmacologia , Glicosídeos , Interleucina-10 , Interleucina-6 , Camundongos , Camundongos Endogâmicos C57BL , Peroxidase , RNA Mensageiro , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/farmacologia
13.
Front Pharmacol ; 13: 982424, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36091829

RESUMO

Isocitrate dehydrogenase (IDH) is the key metabolic enzyme that catalyzes the conversion of isocitrate to α-ketoglutarate (α-KG). Two main types of IDH1 and IDH2 are present in humans. In recent years, mutations in IDH have been observed in several tumors, including glioma, acute myeloid leukemia, and chondrosarcoma. Among them, the frequency of IDH1 mutations is higher than IDH2. IDH1 mutations have been shown to increase the conversion of α-KG to 2-hydroxyglutarate (2-HG). IDH1 mutation-mediated accumulation of 2-HG leads to epigenetic dysregulation, altering gene expression, and impairing cell differentiation. A rapidly emerging therapeutic approach is through the development of small molecule inhibitors targeting mutant IDH1 (mIDH1), as evidenced by the recently approved of the first selective IDH1 mutant inhibitor AG-120 (ivosidenib) for the treatment of IDH1-mutated AML. This review will focus on mIDH1 as a therapeutic target and provide an update on IDH1 mutant inhibitors in development and clinical trials.

14.
J Med Food ; 25(3): 261-271, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35320010

RESUMO

Diosgenin (DIO) is a kind of steroid sapogenin derived from natural plants. It exerts strong anti-infection, antiallergy, antiviral, and antishock pharmacological properties. In this article, the protective effects of DIO against dextran sulfate sodium (DSS)-induced colitis in mice were researched. Compared with the 2.5% DSS treatment group, 15 mg/kg body weight of diosgenin alleviated colitis disease, evidenced by the increased body weight, the decrease in the disease activity index, and the histological scores. Furthermore, 16S rRNA high-throughput sequencing results demonstrated that DIO improved the colon homeostasis through modulating the gut microbiota, including increases in the relative abundance of several probiotic bacteria, such as Prevotellaceae (from 1.4% to 5.8%), Lactobacillus (from 12.3% to 29.7%), Mucispirillum (from 0.07% to 0.49%), and decreases in the pathogenic bacteria, such as Streptococcus (from 1.6% to 0.6%) and Pseudomonadaceae (from 0.004% to 0%). In addition, the concentration of gut microbial metabolites, total short-chain fatty acids (SCFAs), acetic acid, and propionic acid were significantly increased after DIO supplementation. In conclusion, our findings suggested that DIO attenuates DSS-induced colitis in mice by means of modulating imbalanced gut microbiota and increases in SCFA generation.


Assuntos
Colite , Diosgenina , Microbioma Gastrointestinal , Animais , Colite/induzido quimicamente , Colite/tratamento farmacológico , Colite/metabolismo , Sulfato de Dextrana/efeitos adversos , Ácidos Graxos Voláteis/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , RNA Ribossômico 16S/genética
15.
Front Pharmacol ; 12: 764351, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34899321

RESUMO

PGAM1 is overexpressed in a wide range of cancers, thereby promoting cancer cell proliferation and tumor growth, so it is gradually becoming an attractive target. Recently, a series of inhibitors with various structures targeting PGAM1 have been reported, particularly anthraquinone derivatives. In present study, the structure-activity relationships and binding mode of a series of anthraquinone derivatives were probed using three-dimensional quantitative structure-activity relationships (3D-QSAR), molecular docking, and molecular dynamics (MD) simulations. Comparative molecular field analysis (CoMFA, r2 = 0.97, q2 = 0.81) and comparative molecular similarity indices analysis (CoMSIA, r2 = 0.96, q2 = 0.82) techniques were performed to produce 3D-QSAR models, which demonstrated satisfactory results, especially for the good predictive abilities. In addition, molecular dynamics (MD) simulations technology was employed to understand the key residues and the dominated interaction between PGAM1 and inhibitors. The decomposition of binding free energy indicated that the residues of F22, K100, V112, W115, and R116 play a vital role during the ligand binding process. The hydrogen bond analysis showed that R90, W115, and R116 form stable hydrogen bonds with PGAM1 inhibitors. Based on the above results, 7 anthraquinone compounds were designed and exhibited the expected predictive activity. The study explored the structure-activity relationships of anthraquinone compounds through 3D-QSAR and molecular dynamics simulations and provided theoretical guidance for the rational design of new anthraquinone derivatives as PGAM1 inhibitors.

16.
Zhongguo Zhong Yao Za Zhi ; 46(19): 4891-4897, 2021 Oct.
Artigo em Chinês | MEDLINE | ID: mdl-34738382

RESUMO

With the advantages of extensive sources, easy collection, renewability, high yield, carbon circulation, low pollution, and so on, Chinese medicinal solid waste can be converted into clean gas by pyrolysis and gasification, which is then able to serve for industrial production. This is of great practical significance in the context of energy shortage and for solid waste recycling in China. This paper reviews the research progress on biomass gasification principle, gasification medium, and reactor in gasification technology of Chinese medicinal solid waste in recent years. Meanwhile, based on the summary of related research, the defects and improvement measures regarding raw materials, gasification agents, by-products, and reactors were discussed, which provides direction for further development in the gasification technology of Chinese medicinal solid waste in the future.


Assuntos
Pirólise , Resíduos Sólidos , Biomassa , China , Tecnologia
17.
Toxins (Basel) ; 13(9)2021 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-34564600

RESUMO

Patulin (PAT) belongs to the family of food-borne mycotoxins. Our previous studies revealed that PAT caused cytotoxicity in human embryonic kidney cells (HEK293). In the present research, we systematically explored the detailed mechanism of ROS production and ROS clearance in PAT-induced HEK293 cell apoptosis. Results showed that PAT treatment (2.5, 5, 7.5, 10 µM) for 10 h could regulate the expression of genes and proteins involved in the mitochondrial respiratory chain complex, resulting in dysfunction of mitochondrial oxidative phosphorylation and induction of ROS overproduction. We further investigated the role of N-acetylcysteine (NAC), an ROS scavenger, in promoting the survival of PAT-treated HEK293 cells. NAC improves PAT-induced apoptosis of HEK293 cells by clearing excess ROS, modulating the expression of mitochondrial respiratory chain complex genes and proteins, and maintaining normal mitochondrial function. In addition, NAC protects the activity of antioxidant enzymes, maintains normal GSH content, and relieves oxidative damage. Additionally, 4 mM NAC alleviated 7.5 µM PAT-mediated apoptosis through the caspase pathway in HEK293 cells. In summary, our study demonstrated that ROS is significant in PAT-mediated cytotoxicity, which provides valuable insight into the management of PAT-associated health issues.


Assuntos
Acetilcisteína/metabolismo , Acetilcisteína/farmacologia , Apoptose/efeitos dos fármacos , Fosforilação Oxidativa/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Patulina/toxicidade , Espécies Reativas de Oxigênio/metabolismo , Células Cultivadas/efeitos dos fármacos , Células HEK293/efeitos dos fármacos , Humanos , Redes e Vias Metabólicas , Mitocôndrias/metabolismo , Micotoxinas/toxicidade
18.
Artigo em Inglês | MEDLINE | ID: mdl-33921118

RESUMO

The Difficulties in Emotion Regulation Scale (DERS), as one of the most frequently employed measures of emotion regulation (ER), has increasingly been used in numerous researches and applications. However, the structures derived from previous factor-analytic studies have a high degree of inconsistency. In the current study, both the traditional factor analysis method and novel (bifactor) modeling approaches were employed to examine the most optimal measurement structure of the DERS in a sample of 1036 Chinese participants. After a series of comparisons, the findings indicated that the bifactor model, with a general ER factor and four distinct subdimensions, was the most optimal structure for the DERS. Based on the study's findings, the discussion was focused mainly on the future directions and the implications of this bifactor model. The impact and limitations of the study were also discussed, and several suggestions for future research were provided at the end of the paper.


Assuntos
Regulação Emocional , Sintomas Afetivos , China , Análise Fatorial , Humanos , Psicometria
19.
J Pers Assess ; 103(6): 797-806, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33703970

RESUMO

This study aims to simultaneously compare the psychometric properties and examine the factor structures of 3 emotion regulation (ER) strategy scales using a bifactor approach. Due to good reliability and validity, extensive use, and the same scoring method, the Cognitive Emotion Regulation Questionnaire, Difficulties in Emotion Regulation Scale, and Regulatory Emotional Self-Efficacy Scale were used to assess ER strategies in 1,036 Chinese respondents. A bifactor confirmatory factor analysis was designed to address the multidimensionality of the factor structure, and the corresponding bifactor structures were then applied in a subsequent bifactor multidimensional item response theory (MIRT) analysis. Finally, bifactor MIRT was used to compare the psychometric properties of the 3 measures. The results indicated that bifactor structures were appropriate for the 3 ER strategy measures, which performed well overall. Different measures provide the highest accuracy for specific groups and designs. Some strengths and limitations of this article are discussed.


Assuntos
Regulação Emocional , Emoções , Análise Fatorial , Humanos , Psicometria , Reprodutibilidade dos Testes
20.
Talanta ; 224: 121833, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33379051

RESUMO

Cys (Cysteine), Hcy (homocysteine), and GSH (glutathione) are three important kinds of biothiols, playing crucial roles in the variety of pathological and physiological processes. It is greater challenges to simultaneously identify different biothiols due to their similar molecular structures and chemical characteristics. In this work, we employed a multi-emissive fluorescent probe by sulfonyl benzoxadiazole (SBD) with halogen chloride unit as the interaction site based on aromatic substitution-rearrangement strategy to discriminate Cys and Hcy/GSH. The response of probe 1 to Cys would generate FRET and cause a red-shift of fluorescence emission, while Hcy/GSH only lead to different degrees of fluorescence enhancement owing to PET. The probe showed good selectivity, high sensitivity, and low detection limits to three biothiols (Cys: 0.86 µM, Hcy: 0.48 µM and GSH: 0.54 µM). Such capability of the probe could be demonstrated to successfully quantitatively detect the concentrations of Cys/Hcy/GSH in human plasmas. In addition, the probe was also successfully applied for imaging biothiols in lysosomes and real-time monitoring GSH changes in living cells through two-photon fluorescence microscopy.


Assuntos
Cisteína , Corantes Fluorescentes , Glutationa , Homocisteína , Humanos , Espectrometria de Fluorescência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA