Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Comput Struct Biotechnol J ; 21: 5099-5110, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37920819

RESUMO

Synthetic lethal (SL) pairs are pairs of genes whose simultaneous loss-of-function results in cell death, while a damaging mutation of either gene alone does not affect the cell's survival. This makes SL pairs attractive targets for precision cancer therapies, as targeting the unimpaired gene of the SL pair can selectively kill cancer cells that already harbor the impaired gene. Limited by the difficulty of finding true SL pairs, especially on specific cell types, current computational approaches provide only limited insights because of overlooking the crucial aspects of cellular context dependency and mechanistic understanding of SL pairs. As a result, the identification of SL targets still relies on expensive, time-consuming experimental approaches. In this work, we applied cell-line specific multi-omics data to a specially designed deep learning model to predict cell-line specific SL pairs. Through incorporating multiple types of cell-specific omics data with a self-attention module, we represent gene relationships as graphs. Our approach achieves the prediction of SL pairs in a cell-specific manner and demonstrates the potential to facilitate the discovery of cell-specific SL targets for cancer therapeutics, providing a tool to unearth mechanisms underlying the origin of SL in cancer biology. The code and data of our approach can be found at https://github.com/promethiume/SLwise.

2.
Sci Rep ; 13(1): 8752, 2023 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-37253775

RESUMO

Metastatic propagation is the leading cause of death for most cancers. Prediction and elucidation of metastatic process is crucial for the treatment of cancer. Even though somatic mutations have been linked to tumorigenesis and metastasis, it is less explored whether metastatic events can be identified through genomic mutational signatures, which are concise descriptions of the mutational processes. Here, we developed MetaWise, a Deep Neural Network (DNN) model, by applying mutational signatures as input features calculated from Whole-Exome Sequencing (WES) data of TCGA and other metastatic cohorts. This model can accurately classify metastatic tumors from primary tumors and outperform traditional machine learning (ML) models and a deep learning (DL) model, DiaDeL. Signatures of non-coding mutations also have a major impact on the model's performance. SHapley Additive exPlanations (SHAP) and Local Surrogate (LIME) analyses identify several mutational signatures which are directly correlated to metastatic spread in cancers, including APOBEC-mutagenesis, UV-induced signatures, and DNA damage response deficiency signatures.


Assuntos
Aprendizado Profundo , Neoplasias , Humanos , Mutação , Neoplasias/genética , Mutagênese , Carcinogênese/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA