Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Polymers (Basel) ; 16(13)2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-39000684

RESUMO

Bamboo is composed of thick-walled fibrous tissue and thin-walled parenchymal tissue. To compare the energy consumption of preparing lignocellulose nanofibrils (LCNF) from these bamboo tissues, the crystallinity, sol. viscosity, morphology and mechanical properties of LCNF at different preparation stages were characterized in detail. It required at least nine homogenization cycles for dissociating the fibrous tissue, but only six cycles for the parenchymal tissue. The average diameter of LCNF isolated from fibrous and parenchymal tissues was 45.1 nm and 36.2 nm, respectively. The tensile strength of the LCNF film prepared from parenchymal tissue reached 142.46 MPa, whereas the film from fibrous tissue reached only 122.82 MPa. Additionally, a metal organic framework (MOF) was used to produce MOF-LCNF film with enhanced UV protection and antibacterial properties. The results indicated that the energy consumption for preparing LCNF from parenchymal tissue is significantly lower than that for preparing LCNF from fibrous tissue. This study offers a low-cost and eco-friendly method for preparing LCNF, promoting the precise utilization of different tissues from bamboo based on their unique characteristics.

2.
Int J Biol Macromol ; 265(Pt 1): 130894, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38490388

RESUMO

Bamboo fibers (BF), as an important sustainable natural material, are becoming a hot alternative to synthetic fibers for the reinforcement of polypropylene (PP)-based composites. However, the weak interfacial compatibility between BF and PP as matrix and their inherent flammability limit the practical application of BF/PP composites (BPC). Here, a fire-safe BPC was fabricated by constructing flame-retardant interfacial layers containing tannic acid (TA)-Fe3+ complex and halloysite nanotubes (HNTs) on the fiber matrix followed by a hot-pressing process. The results showed that the interfacial chelating of TA with Fe3+ improved the dispersion of HNTs on the fibers and the interfacial interactions within the fiber matrix, resulting in the as-fabricated composite with significantly improved mechanical properties and water resistance. In addition, the flame-retardant composite exhibited higher thermal stability and enhanced residual char content. Moreover, the composite possessed significant flame-retardant performances with a reduction of 23.75 % in the total heat release and 32.44 % in the total smoke production, respectively, owing to the flame retarding in gaseous phase and condensed phase of TA-Fe3+@HNTs layers. This work offers a green and eco-friendly strategy to address the inherent problems of BPC material in terms of fire safety and interfacial compatibility, thus broadening their applications in the automotive interior and construction industries.


Assuntos
Indústria da Construção , Retardadores de Chama , Nanotubos , Polifenóis , Argila , Polipropilenos
3.
Polymers (Basel) ; 16(6)2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38543385

RESUMO

This study investigated the effects of different adhesives, phenol formaldehyde (PF) and melamine urea formaldehyde (MUF), on the mechanical and fire properties of flame-retardant laminated bamboo lumber (LBL). The results demonstrated that the flame-retardant treatment using phosphorus-nitrogen-boron compounds endowed the LBL with excellent flame retardancy and smoke suppression properties, even though the bending strength and bond shear strength were slightly reduced. The PF-glued LBL exhibited superior mechanical and shear properties to the MUF-glued ones, primarily due to its higher processing temperature and deeper adhesive penetration. In addition, the MUF-glued flame-retardant LBL displayed better heat release reduction and smoke suppression properties than the PF-glued LBL, which resulted from the synergistic flame retardancy between the melamine element in MUF and the applied flame retardant. The analysis of the influence of adhesive type on the mechanical and fire properties of flame-retardant LBL holds significant importance for the future design and production of high-performance LBL material.

4.
Int J Biol Macromol ; 260(Pt 1): 129393, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38218301

RESUMO

Lightweight, porous cellulose foam is an attractive alternative to traditional petroleum-based products, but the intrinsic flammability impedes its use in construction. Herein, an environmentally friendly strategy for scalable fabrication of flame-retardant bamboo pulp foam (BPF) using a foam-forming technique followed by low-cost ambient drying is reported. In the process, a hierarchical structure of halloysite nanotubes (HNT) was decorated onto bamboo pulp fibers through layer-by-layer assembling of chitosan (CS) and phytic acid (PA). This modification retained the highly porous microcellular structure of the resultant BPF (92 %-98 %). It improved its compressive strength by 228.01 % at 50 % strain, endowing this foam with desired thermal insulation properties and sound absorption coefficient comparable to commercial products. More importantly, this foam possessed exceptional flame retardancy (47.05 % reduction in the total heat release and 95.24 % reduction in the total smoke production) in cone calorimetry, and it showed excellent extinguishing performance, indicating considerably enhanced fire safety. These encouraging results suggest that the flame retardant BPF has the potential to serve as a renewable and cost-effective alternative to traditional foam for applications in acoustic and thermal insulation.


Assuntos
Quitosana , Retardadores de Chama , Nanotubos , Petróleo , Argila , Ácido Fítico , Som
5.
Molecules ; 25(9)2020 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-32403284

RESUMO

Bamboo-plastic composites (BPCs) as new biomass-plastic composites have recently attracted much attention. However, weak mechanical performance and high moisture absorption as well as low thermal stability greatly limit their industrial applications. In this context, different amounts of halloysite nanotubes (HNTs) were used as a natural reinforcing filler for BPCs. It was found that the thermal stability of BPCs increased with increasing HNT contents. The mechanical strength of BPCs was improved with the increase in HNT loading up to 4 wt% and then worsened, while the impact strengths were slightly reduced. Low HNT content (below 4 wt%) also improved the dynamic thermomechanical properties and reduced the water absorption of the BPCs. Morphological studies confirmed the improved interfacial compatibility of the BPC matrix with 4 wt% HNT loading, and high-concentration HNT loading (above 6 wt%) resulted in easy agglomeration. The results highlight that HNTs could be a feasible candidate as nanoreinforcements for the development of high-performance BPCs.


Assuntos
Argila/química , Nanotubos/química , Plásticos/química , Sasa/química , Biomassa , Teste de Materiais , Microscopia Eletrônica de Varredura , Nanotubos/ultraestrutura , Temperatura , Água/química
6.
Materials (Basel) ; 12(22)2019 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-31752088

RESUMO

Benzyl ammonium chloride (BAC) is a broad-spectrum bactericide, but vulnerable to leaching by water. In this paper, halloysite nanotubes (HNT) and montmorillonite (MMT) were used as drug carriers to load BAC, in order to achieve good anti-mildew activity and long-term sustained release properties. The HNT and MMT nano-composites were characterized by transmission electron microscope (TEM), Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), thermogravimetric analysis (TGA), and nitrogen adsorption/desorption. XRD results showed that BAC intercalated the interlayer of MMT, and expanded the interlayer spacing from 1.15 nm to 1.75 nm. Pore analysis showed that BAC decreased the cavity of halloysite nanotubes to a certain extent, which indicated that BAC loaded inside the lumen of HNT successfully. TG analysis showed that the loading capacity of MMT to BAC was higher than HNT. The accelerated-release experiments revealed both two clays have significant sustained-release effects on BAC, and the releasing rate of HNT was relatively lower. Both HNT and MMT have promising application prospects as sustained-release carriers. The inhibition test showed that BAC in nano-clay has good anti-mildew resistance performance.

7.
RSC Adv ; 9(69): 40277-40285, 2019 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-35542671

RESUMO

Tremendous efforts have been dedicated to developing functionalized cellulose materials by synthesis with copper-based metal-organic frameworks (MOF199), also known as HKUST-1. However, few studies have explored the deposition of MOFs on woody materials due to the complex chemical compositions of these materials (cellulose, hemicellulose, lignin) and their difficulty of bonding with MOF crystals. In this article, for the first time, MOF199 was successfully synthesized onto two different woody materials, moso bamboo and balsa wood, via in situ deposition at room temperature. The results show that the diverse surface roughness and the hierarchical structures of woody materials have significant effects on the size of MOF199 crystal. Additionally, bamboo and wood coated with MOF199 exhibited better antibacterial activities against Staphylococcus aureus (S. aureus) than Escherichia coli (E. coli); they could minimize S. aureus colony levels to 2.08 from 8.98 CFU cm-2. This study provides a facile method for the functionalization of woody materials with MOFs for antibacterial applications.

8.
RSC Adv ; 9(72): 42062-42070, 2019 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-35542876

RESUMO

Iodopropynyl butylcarbamate (IPBC) is currently one of the most important fungicides widely used for industrial coatings and bamboo treatment. In this work, a controlled release composite with IPBC for inhibition of mold and stain fungi was prepared using enlarged halloysite nanotubes (HNTs) with layer-by-layer (LbL) assembly of polyelectrolyte multilayers. The acid-treated HNTs retained their tubular structure with increased internal diameter, and IPBC loading efficiency was therefore increased to 24.4%, approximately three times the amount of raw HNTs (8.4%). In vitro drug release assay showed that IPBC could be released from HNTs in a sustainable manner with a total release amount of 33.8% over a period of 35 days. The release rate of IPBC could be further controlled by adjusting the number of LbL layers on the tubes and the released amount of IPBC could be limited to less than 10% in 100 days. An inhibition zone test indicated the as-prepared nanocomposites exhibited significant anti-fungal performance against three mold fungi (Aspergillus niger, Trichoderma viride, and Penicillium citrinum) and one stain fungus (Botryodiplodia theobromae). The results support the potential use of HNTs for a prolonged service life of bamboo products.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA