Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
BMC Cancer ; 24(1): 296, 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38438882

RESUMO

BACKGROUND: The effect of DOCK1 gene on the biological behavior of endometrial carcinoma cells and its related pathway has not been reported. METHODS: The immunohistochemical method and western blot were utilized to analyze DOCK1 protein expression in endometrial tissues and cells, respectively. CCK-8, BrdU, transwell and flow cytometry were performed to analyze the effect of DOCK1 expression changes on the viability, proliferation, invasion, migration and apoptosis of endometrial cancer cells, respectively. The effects of DOCK1 gene on Bcl-2, MMP9, Ezrin, E-cadherin and c-RAF/ERK1/2 signaling pathway were evaluated by western blot. The xenograft models were constructed to analyze the effect of DOCK1 in vivo. RESULTS: DOCK1 expression was increased in endometrial cancer tissues and cells compared with those in normal adjacent tissues and cells. DOCK1 knockout could inhibit the malignant biological behavior of endometrial cancer cells, while DOCK1 overexpression played the opposite effect. The expression of E-cadherin was upregulated and those of MMP9, Ezrin, Bcl-2, p-c-RAF (S338) and p-ERK1/2 (T202/Y204) were downregulated after DOCK1 knockout, while DOCK1 overexpression played the opposite effect. Additionally, Raf inhibitor LY3009120 reversed the function of DOCK1 on malignant biological behavior. In vivo experiment results showed that the growth and weight of transplanted tumors in nude mice were inhibited after DOCK1 knockout. The changes of E-cadherin, MMP9, Ezrin and Bcl-2 expressions in the transplanted tumors were consistent with those in vitro. CONCLUSION: DOCK1 could enhance the malignant biological behavior of endometrial cancer cells, which might be through c-RAF/ERK1/2 signaling pathways in vitro and in vivo.


Assuntos
Neoplasias do Endométrio , Sistema de Sinalização das MAP Quinases , Animais , Camundongos , Feminino , Humanos , Metaloproteinase 9 da Matriz , Camundongos Nus , Fatores de Transcrição , Neoplasias do Endométrio/genética , Caderinas/genética , Proteínas Proto-Oncogênicas c-bcl-2 , Proteínas rac de Ligação ao GTP
2.
Chemosphere ; 340: 139933, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37625492

RESUMO

Salinization in freshwater lakes is becoming a serious global environmental problem, especially in lakes of plateaus such as south-western plateau of China. However, limited information is available about the molecular response of freshwater hydrophytes to salinity under multiple stress. In the present study, a weighted gene co-expression network (WGCNA) was used to identify the modules of co-expressed genes in the physiological and biochemical indicators of Pistia stratiotes to determine its molecular response to salinity (NaCl) alone and when combined with cadmium (Cd). The physiological and biochemical indicators showed that P. stratiotes improved its salt tolerance by enhancing photosynthetic abilities, reducing oxidative stress, and inducing osmoprotectant generation. Morever, addition of NaCl reduced the Cd accumulation in P. stratiotes. Transcriptome and WGCNA analysis revealed that the pathways of alpha-linolenic acid metabolism, ribosomal, flavonoid biosynthesis, and phenylpropanoid biosynthesis were significantly enriched in both treatments. Genes associated with photosynthesis-antenna proteins, nitrogen metabolism, and the acid cycle pathways were only expressed under salinity stress alone, while the proteasome pathway was only significantly enriched in the combined salinity and Cd treatment. Our findings provide novel insights into the effects of salinization on aquatic plants in freshwater ecosystems and the management of aquatic ecosystems under global change.


Assuntos
Cádmio , Hydrocharitaceae , Cádmio/toxicidade , Ecossistema , Salinidade , Cloreto de Sódio , Lagos
3.
Cancer Med ; 12(14): 15289-15303, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37260179

RESUMO

PURPOSE: DYNLT3 is identified as an age-related gene. Nevertheless, the specific mechanism of its carcinogenesis in breast tumor has not been clarified. This research aims to elucidate the role and the underlying molecular pathways of DYNLT3 on breast cancer tumorigenesis. METHODS: The differential expression of DYNLT3 among breast cancer, breast fibroids, and normal tissues, as well as in various breast cancer cell lines were detected by immunohistochemical staining, real-time quantitative reverse transcription-PCR and Western blotting, respectively. Additionally, the role of DYNLT3 on cell viability and proliferation were observed through cell counting kit-8, bromodeoxyuridine, and colony formation experiments. Migratory and invasive abilities was envaulted by wound healing and Transwell methods. Apoptotic cells rate was examined by flow cytometry. Furthermore, nude mice xenograft models were established to confirm the role of DYNLT3 in tumor formation in vivo. RESULTS: DYNLT3 expression was highly rising in both breast cancer tissues and cells. DYNLT3 knockdown obviously suppressed cell growth, migration and invasion, and induced cell apoptosis in MDA-MB-231 and MCF-7 breast cancer cells. The overexpression of DYNLT3 exerted the opposite effect in MDA-MB-231 cells. Moreover, DYNLT3 knockdown inhibited tumor formation in vivo. Mechanistically, an elevation of N-cadherin and vimentin levels and a decline of E-cadherin were observed when DYNLT3 was upregulated, which was reversed when DYNLT3 knockdown was performed. CONCLUSION: DYNLT3 may function as a tumor-promotor of age-associated breast cancer, which is expected to provide experimental basis for new treatment options.


Assuntos
Neoplasias da Mama , Animais , Camundongos , Humanos , Feminino , Linhagem Celular Tumoral , Camundongos Nus , Neoplasias da Mama/patologia , Células MCF-7 , Proliferação de Células , Carcinogênese/genética , Transição Epitelial-Mesenquimal/genética , Movimento Celular/genética , Regulação Neoplásica da Expressão Gênica , Dineínas/genética , Dineínas/metabolismo , Dineínas/farmacologia
4.
Cancer Med ; 12(13): 14403-14412, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37162289

RESUMO

BACKGROUND: Propofol is a drug with potential anticancer effect. This study aimed to explore the effect of propofol on chemosensitivity of cervical cancer cells to paclitaxel. METHODS: HeLa and CaSki cells were selected for drug experiments. Cell viability was evaluated via CCK-8 assay, and the combination index (CI) was calculated by CompuSyn software. A clinically relevant concentration and IC30 of propofol were selected in combination with 5 nM paclitaxel. BrdU incorporation, transwell, and flow cytometry assays were utilized to evaluate cell proliferation, migration, invasion, and apoptosis. The expression of ß-tubulin, stathmin 1, and GAPDH proteins was evaluated by Western blot. The stathmin 1 cDNA plasmid was used to establish stathmin 1-overexpressing CaSki cells. RESULTS: At clinically relevant concentrations (0-80 µM), propofol did not affect cancer cell viability, but high concentrations (100-800 µM) reduced cell viability. The CI values of propofol with IC30 (200 µM in HeLa; 400 µM in CaSki) combined with 5 nM paclitaxel were <1. The effect of propofol with IC30 combined with paclitaxel on cell proliferation, migration, invasion, and apoptosis were stronger than individual effect, while 30 µM propofol had no effect. The Western blot results showed 30 µM propofol did not affect ß-tubulin and stathmin 1 expression in cells, although paclitaxel upregulated ß-tubulin expression while downregulating stathmin 1 expression. Compared with paclitaxel alone, cotreatment with propofol at its IC30 and paclitaxel decreased stathmin 1 expression but had no effect on ß-tubulin expression. High stathmin 1 expression weakened the effect of paclitaxel on cell viability and apoptosis, while propofol partially reversed these effect. CONCLUSION: Propofol at clinically relevant concentrations had no effect on the malignant biological behaviors of cervical cancer cells, while propofol at high concentrations decreased.Propofol with IC30 and paclitaxel had synergetic effect on cancer cells through a reduction in stathmin 1 expression.


Assuntos
Propofol , Neoplasias do Colo do Útero , Feminino , Humanos , Paclitaxel/farmacologia , Paclitaxel/uso terapêutico , Propofol/farmacologia , Propofol/uso terapêutico , Neoplasias do Colo do Útero/tratamento farmacológico , Neoplasias do Colo do Útero/genética , Neoplasias do Colo do Útero/metabolismo , Tubulina (Proteína)/genética , Estatmina/genética , Linhagem Celular Tumoral , Apoptose , Proliferação de Células
5.
Cancers (Basel) ; 15(2)2023 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-36672495

RESUMO

Ferroptosis exhibits a potent antitumor effect and dihydroorotate dehydrogenase (DHODH) has recently been identified as a novel ferroptosis defender. However, the role of DHODH inhibition in cervical cancer cells is unclear, particularly in synergy with cisplatin via ferroptosis. Herein, shRNA and brequinar were used to knock down DHODH and directly inhibit DHODH, respectively. Immunohistochemistry and Western blotting assays were performed to measure the expression of proteins. CCK-8 and colony formation assays were employed to assess the cell viability and proliferation. Ferroptosis was monitored through flow cytometry, the malondialdehyde assay kit and JC-1 staining analyses. The nude mouse xenograft model was generated to examine the effect of combination of DHODH inhibition and cisplatin on tumor growth in vivo. The expression of DHODH was increased in cervical cancer tissues. DHODH inhibition inhibited the proliferation and promoted the ferroptosis in cervical cancer cells. A combination of DHODH inhibition and cisplatin synergistically induced both in vitro and in vivo ferroptosis and downregulated the ferroptosis defender mTOR pathway. Therefore, the combination of DHODH inhibition and cisplatin exhibits synergistic effects on ferroptosis induction via inhibiting the mTOR pathway could provide a promising way for cervical cancer therapy.

6.
Sci Total Environ ; 837: 155813, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-35550907

RESUMO

Increasing evidence shows that di-2-ethylhexyl phthalate (DEHP), mostly commonly used phthalate for the production of flexible polyvinyl chloride (PVC), has the potential to induce serious health risks in humans. However, the understanding of DEHP-induced lactation performance remains largely unknown. We sought to investigate the adverse effects of DEHP on lactation and examine the underlying mechanism linking DEHP exposure with the lactation alterations. We successfully adapted a maternal DEHP exposure model in female pregnant/lactating mice. Then we determined effects of DEHP exposure on food intake, body weight and milk production as well as the alterations in endocrine factors in lactating mice. The integrated metabonomic and transcriptomic analyses of the mammary gland were performed to measure the changed metabolites and genes related to DEHP exposure-induced lactation alterations. We observed the reduced food intake with elevated blood leptin and the decreased milk yield as well as the reduced levels of serum prolactin, growth hormone, insulin-like growth factor 1 and insulin after exposed to DEHP. Furthermore, 208 metabolites and 3452 genes were separately identified as differentially expressed features associated with DEHP exposure. Integrated metabonomic and transcriptomic analyses demonstrated that DEHP caused lactation depression mainly through impairing energy generation, inducing stress responses along with the hypoactivation of inflammation, reducing the production of antioxidants, disrupting hormone homeostasis and repressing the synthesis of milk constituents (the lower glucose availability for lactose synthesis; the disruption of milk fat globule membrane for lipid droplet formation; the ribosomal dysfunction and disruption of post-modifications for milk protein synthesis). We demonstrated that DEHP disrupted several lactation-related hormone homeostasis and multiple processes like energy insufficiency, inflammation activation, oxidative stress aggravation and disturbance of milk production in the mammary gland of female lactating mice. Our results provide valuable information for the health risk of plastic additive (DEHP) on female lactation dysfunction.


Assuntos
Dietilexilftalato , Animais , Dietilexilftalato/toxicidade , Feminino , Humanos , Inflamação , Insulina , Lactação , Exposição Materna/efeitos adversos , Camundongos , Ácidos Ftálicos , Gravidez
7.
Theriogenology ; 174: 139-148, 2021 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-34454319

RESUMO

The SMAD protein family plays crucial roles in reproduction as a downstream target genes of the TGFß signaling pathway. Many studies have focused on the expression change exploration of SMADs during testicular development and investigation of SMAD2 in hormone synthesis regulation. However, little attention has been given to determining the regulatory mechanism of SMADs in sheep testes. In the present study, we first detected SMAD mRNA expression levels in three-month-old (3 M), six-month-old (6 M), nine-month-old (9 M) and two-year-old (2Y) sheep testes. Different SMADs showed various expression patterns. In addition, the subcellular localization of SMAD2 was also analyzed, and Sertoli cells (SCs), Leydig cells (LCs) and spermatogonia presented mainly positive staining. Protein and nucleic acid sequence alignment showed that the SMAD2 gene was extremely homologous between various species. SMAD2 interference RNA was transfected into sheep LCs to examine the cell proliferation and hormone levels. The testosterone level was significantly decreased, and cell proliferation efficiency presented the same trend (P < 0.05). Moreover, SMAD2 downregulation promoted cell apoptosis (P < 0.05) and changed the cell cycle. In total, our results revealed that downregulating the expression of SMAD2 can effectively inhibit testosterone levels by affecting cell proliferation and apoptosis.


Assuntos
Células Intersticiais do Testículo , Diferenciação Sexual , Animais , Proliferação de Células , Masculino , Células de Sertoli , Ovinos , Testículo , Testosterona
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA