Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
1.
Skin Res Technol ; 30(5): e13719, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38696230

RESUMO

BACKGROUND: The assessment of skin aging through skin measurements faces limitations, making perceived age evaluation a more valuable and direct tool for assessing skin aging. Given that the aging process markedly affects the appearance of the eye contour, characterizing the eye region could be beneficial for perceived age assessment. This study aimed to analyze age-correlated changes in the eye contour within the Chinese Han female population and to develop, validate, and apply a multiple linear regression model for predicting perceived age. MATERIALS AND METHODS: A naïve panel of 107 Chinese women assessed the perceived ages of 212 Chinese Han women. Instrumental analysis evaluated periorbital parameters, including palpebral fissure width (PFW), palpebral fissure height (PFH), acclivity of palpebral fissure (AX), angle of inner canthal (AEN), and angle of outer canthal (AEX). These parameters were used to construct a multiple linear regression model for predicting the perceived ages of Chinese Han women. A combined treatment using Fotona 4D and an anti-aging eye cream, formulated with plant extracts, peptides, and antioxidants, was conducted to verify the cream's anti-aging efficacy and safety. This eye cream was then tested in a large-scale clinical trial involving 101 participants. The prediction model was employed in this trial to assess the perceived ages of the women after an 8-week application of the eye cream. RESULTS: All parameters were observed to decrease with age. An intergroup comparison indicated that eyelid aging in Chinese Han women accelerates beyond the age of 50. Consequently, a linear regression model was constructed and validated, with the perceived age being calculated as 183.159 - 1.078 * AEN - 4.487 * PFW + 6.061 * PFH - 1.003 * AX - 0.328 * AEX. The anti-aging efficacy and safety of the eye cream were confirmed through combined treatment with Fotona 4D, showing improvements in wrinkles, elasticity, and dark circles under the eyes. In a large-scale clinical evaluation using this eye cream, a perceived age prediction model was applied, suggesting that 8 weeks of use made participants appear 2.25 years younger. CONCLUSION: Our study developed and validated a multiple linear regression model to predict the perceived age of Chinese Han women. This model was successfully utilized in a large-scale clinical evaluation of anti-aging eye cream, revealing that 8 weeks of usage made participants appear 2.25 years younger. This method effectively bridges the gap between clinical research and consumer perceptions, explores the complex factors influencing perceived age, and aims to improve anti-aging formulations.


Assuntos
Povo Asiático , Envelhecimento da Pele , Humanos , Feminino , Envelhecimento da Pele/efeitos dos fármacos , Envelhecimento da Pele/fisiologia , Envelhecimento da Pele/etnologia , Pessoa de Meia-Idade , Adulto , Idoso , China/etnologia , Adulto Jovem , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Creme para a Pele/administração & dosagem , Modelos Lineares , Olho , População do Leste Asiático
2.
Phytomedicine ; 129: 155679, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38701542

RESUMO

BACKGROUND: As the largest organ of the body, the skin is constantly subjected to ultraviolet radiation (UVR), leading to inflammations and changes that mirror those seen in chronological aging. Although various small molecule drugs have been explored for treating skin photoaging, they typically suffer from low stability and a high incidence of adverse reactions. Consequently, the continued investigation of photoaging treatments, particularly those utilizing herbal products, remains a critical clinical endeavor. One such herbal product, Lapagyl, is derived from the bark of the lapacho tree and possesses antioxidant efficacies that could be beneficial in combating skin photoaging. PURPOSE: This research aimed to evaluate the efficacy of the herbal product Lapagyl in combating UVR-induced skin photoaging. Additionally, it sought to unravel the mechanisms by which Lapagyl promotes the regeneration of the skin extracellular matrix. METHODS: To investigate whether Lapagyl can alleviate skin aging and damage, a UVR radiation model was established using SKH-1 hairless mice. The dorsal skins of these mice were evaluated for wrinkle formation, texture, moisture, transepidermal water loss (TEWL), and elasticity. Pathological assessments were conducted to determine Lapagyl's efficacy. Additionally, single-cell sequencing and spectrum analysis were employed to elucidate the working mechanisms and primary components of Lapagyl in addressing UVR-induced skin aging and injury. RESULTS: Lapagyl markedly reduced UVR-induced wrinkles, moisture loss, and elasticity decrease in SKH-1 mice. Single-cell sequencing demonstrated that Lapagyl corrected the imbalance in cell proportions caused by UVR, decreased UVR-induced ROS expression, and protected basal and spinous cells from skin damage. Additionally, Lapagyl effectively prevented the entry of inflammatory cells into the skin by reducing CCL8 expression and curtailed the UVR-induced formation of Foxp3+ regulatory T cells (Tregs) in the skin. Both pathological assessments and ex vivo skin model results demonstrated that Lapagyl effectively reduced UVR-induced damage to collagen and elastin. Spectrum analysis identified Salidroside as the primary compound remaining in the skin following Lapagyl treatment. Taken together, our study elucidated the skin protection mechanism of the herbal product Lapagyl against UVR damage at the cellular level, revealing its immunomodulatory effects, with salidroside identified as the primary active compound for skin. CONCLUSION: Our study provided a thorough evaluation of Lapagyl's protective effects on skin against UVR damage, delving into the mechanisms at the cellular level. We discovered that Lapagyl mitigates skin inflammation and immunosuppression by regulating Foxp3+ Tregs and the CCL pathway. These insights indicate that Lapagyl has potential as a novel therapeutic option for addressing skin photoaging.

3.
J Colloid Interface Sci ; 668: 646-657, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38696992

RESUMO

Severe spinal cord injury (SCI) leads to dysregulated neuroinflammation and cell apoptosis, resulting in axonal die-back and the loss of neuroelectric signal transmission. While biocompatible hydrogels are commonly used in SCI repair, they lack the capacity to support neuroelectric transmission. To overcome this limitation, we developed an injectable silk fibroin/ionic liquid (SFMA@IL) conductive hydrogel to assist neuroelectric signal transmission after SCI in this study. The hydrogel can form rapidly in situ under ultraviolet (UV) light. The mechanical supporting and neuro-regenerating properties are provided by silk fibroin (SF), while the conductive capability is provided by the designed ionic liquid (IL). SFMA@IL showed attractive features for SCI repair, such as anti-swelling, conductivity, and injectability. In vivo, SFMA@IL hydrogel used in rats with complete transection injuries was found to remodel the microenvironment, reduce inflammation, and facilitate neuro-fiber outgrowth. The hydrogel also led to a notable decrease in cell apoptosis and the achievement of scar-free wound healing, which saved 45.6 ± 10.8 % of spinal cord tissue in SFMA@IL grafting. Electrophysiological studies in rats with complete transection SCI confirmed SFMA@IL's ability to support sensory neuroelectric transmission, providing strong evidence for its signal transmission function. These findings provide new insights for the development of effective SCI treatments.


Assuntos
Condutividade Elétrica , Fibroínas , Hidrogéis , Ratos Sprague-Dawley , Traumatismos da Medula Espinal , Traumatismos da Medula Espinal/tratamento farmacológico , Traumatismos da Medula Espinal/fisiopatologia , Traumatismos da Medula Espinal/patologia , Animais , Ratos , Hidrogéis/química , Hidrogéis/farmacologia , Fibroínas/química , Fibroínas/farmacologia , Injeções , Apoptose/efeitos dos fármacos , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Tamanho da Partícula
4.
Front Pharmacol ; 15: 1372139, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38572430

RESUMO

Background: Most preschool children are distressed during anesthesia induction. While current pharmacological methods are useful, there is a need for further optimization to an "ideal" standard. Remimazolam is an ultra-short-acting benzodiazepine, and intranasal remimazolam for pre-induction sedation may be promising. Methods: This study included 32 preschool children who underwent short and minor surgery between October 2022 and January 2023. After pretreatment with lidocaine, remimazolam was administered to both nostrils using a mucosal atomizer device. The University of Michigan Sedation Score (UMSS) was assessed for sedation 6, 9, 12, 15, and 20 min after intranasal atomization. We used Dixon's up-and-down method, and probit and isotonic regressions to determine the 50% effective dose (ED50) and 95% effective dose (ED95) of intranasal remimazolam for pre-induction sedation. Results: Twenty-nine pediatric patients were included in the final analysis. The ED50 and ED95 of intranasal remimazolam for successful pre-induction sedation, when processed via probit analysis, were 0.65 (95% confidence interval [CI], 0.59-0.71) and 0.78 mg/kg (95% CI, 0.72-1.07), respectively. In contrast, when processed by isotonic regression, they were 0.65 (95% CI: 0.58-0.72 mg/kg) and 0.78 mg/kg (95% CI: 0.69-1.08 mg/kg), respectively. At 6 min after intranasal remimazolam treatment, 81.2% (13/16) of "positive" participants were successfully sedated with a UMSS ≧ 1. All the "positive" participants were successfully sedated within 9 min. Conclusion: Intranasal remimazolam is feasible for preschool children with a short onset time. For successful pre-induction sedation, the ED50 and ED95 of intranasal remimazolam were 0.65 and 0.78 mg/kg, respectively.

5.
mSystems ; 9(3): e0000824, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38426796

RESUMO

The crucial function of circulating microbial DNA (cmDNA) in peripheral blood is gaining recognition because of its importance in normal physiology and immunity in healthy individuals. Evidence suggests that cmDNA in peripheral blood is derived from highly abundant, translocating gut microbes. However, the associations with and differences between cmDNA in peripheral blood and the gut microbiome remain unclear. We collected blood, urine, and fecal samples from volunteers to compare their microbial information via 16S rDNA sequencing. The results revealed that, compared with gut microbial DNA, cmDNA in peripheral blood was associated with reduced diversity and a distinct microbiota composition. The cmDNA in the blood reflects the biochemical processes of microorganisms, including synthesis, energy conversion, degradation, and adaptability, surpassing that of fecal samples. Interestingly, cmDNA in blood showed a limited presence of DNA from anaerobes and gram-positive bacteria, which contrast with the trend observed in fecal samples. Furthermore, analysis of cmDNA revealed traits associated with mobile elements and potential pathologies, among others, which were minimal in stool samples. Notably, cmDNA analysis indicated similarities between the microbial functions and phenotypes in blood and urine samples, although greater diversity was observed in urine samples. Source Tracker analysis suggests that gut microbes might not be the main source of blood cmDNA, or a selective mechanism allows only certain microbial DNA into the bloodstream. In conclusion, our study highlights the composition and potential functions associated with cmDNA in peripheral blood, emphasizing its selective presence; however, further research is required to elucidate the mechanisms involved.IMPORTANCEOur research provides novel insights into the unique characteristics and potential functional implications of circulating microbial DNA (cmDNA) in peripheral blood. Unlike other studies that analyzed sequencing data from fecal or blood microbiota in different study cohorts, our comparative analysis of cmDNA from blood, urine, and fecal samples from the same group of volunteers revealed a distinct blood-specific cmDNA composition. We discovered a decreased diversity of microbial DNA in blood samples compared to fecal samples as well as an increased presence of biochemical processes microbial DNA in blood. Notably, we add to the existing knowledge by documenting a reduced abundance of anaerobes and gram-positive bacteria in blood compared to fecal samples according to the analysis of cmDNA and gut microbial DNA, respectively. This observation suggested that a potential selective barrier or screening mechanism might filter microbial DNA molecules, indicating potential selectivity in the translocation process which contrasts with the traditional view that cmDNA primarily originates from random translocation from the gut and other regions. By highlighting these differences, our findings prompt a reconsideration of the origin and role of cmDNA in blood circulation and suggest that selective processes involving more complex biological mechanisms may be involved.


Assuntos
Microbioma Gastrointestinal , Microbiota , Humanos , Fezes/química , Microbioma Gastrointestinal/genética , DNA Ribossômico/análise , Análise de Sequência de DNA
6.
Bioelectrochemistry ; 157: 108654, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38281366

RESUMO

Microbiologically influenced corrosion (MIC) caused by corrosive microorganisms poses significant economic losses and safety hazards. Conventional corrosion prevention methods have limitations, so it is necessary to develop the eco-friendly and long-term effective strategies to mitigate MIC. This study investigated the inhibition of Vibrio sp. EF187016 biofilm on Geobacter sulfurreducens on carbon steel. Vibrio sp. EF187016 biofilm reduced the corrosion current density and impeded pitting corrosion. A thick and uniform Vibrio sp. EF187016 biofilm formed on the coupon surfaces, acting as a protective layer against corrosive ions and electron acquisition by G. sulfurreducens. The pre-grown mature Vibrio sp. EF187016 biofilms, provided enhanced protection against G. sulfurreducens corrosion. Additionally, the extracellular polymeric substances from Vibrio sp. EF187016 was confirmed to act as a green corrosion inhibitor to mitigate microbial corrosion. This study highlights the potential of active biofilms for eco-friendly corrosion protection, offering a novel perspective on material preservation against microbial corrosion.


Assuntos
Cáusticos , Geobacter , Aço , Carbono , Corrosão , Cáusticos/farmacologia , Biofilmes
7.
Brain Behav Immun ; 115: 43-63, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37774892

RESUMO

Traumatic brain injury (TBI) and stroke share a common pathophysiology that worsens over time due to secondary tissue injury caused by sustained inflammatory response. However, studies on pharmacological interventions targeting the complex secondary injury cascade have failed to show efficacy. Here, we demonstrated that low-dose ionizing radiation (LDIR) reduced lesion size and reversed motor deficits after TBI and photothrombotic stroke. Magnetic resonance imaging demonstrated significant reduction of infarct volume in LDIR-treated mice after stroke. Systems-level transcriptomic analysis showed that genes upregulated in LDIR-treated stoke mice were enriched in pathways associated with inflammatory and immune response involving microglia. LDIR induced upregulation of anti-inflammatory- and phagocytosis-related genes, and downregulation of key pro-inflammatory cytokine production. These findings were validated by live-cell assays, in which microglia exhibited higher chemotactic and phagocytic capacities after LDIR. We observed substantial microglial clustering at the injury site, glial scar clearance and reversal of motor deficits after stroke. Cortical microglia/macrophages depletion completely abolished the beneficial effect of LDIR on motor function recovery in stroke mice. LDIR promoted axonal projections (brain rewiring) in motor cortex and recovery of brain activity detected by electroencephalography recordings months after stroke. LDIR treatment delayed by 8 h post-injury still maintained full therapeutic effects on motor recovery, indicating that LDIR is a promising therapeutic strategy for TBI and stroke.


Assuntos
Lesões Encefálicas Traumáticas , Lesões Encefálicas , Acidente Vascular Cerebral , Camundongos , Animais , Encéfalo/metabolismo , Lesões Encefálicas/metabolismo , Acidente Vascular Cerebral/metabolismo , Lesões Encefálicas Traumáticas/metabolismo , Microglia/metabolismo , Radiação Ionizante , Camundongos Endogâmicos C57BL
8.
Sci Total Environ ; 904: 167427, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37774868

RESUMO

Understanding the nature of arsenic (As) adsorbed on FeIII oxyhydroxides, and the subsequent behavior of As during the crystallization process, is critical to predicting its fate in a range of natural and engineered settings. In this work, As adsorbed on FeIII oxyhydroxides formed in the different reaction media at different pH values were characterized with X-ray diffraction (XRD), Raman spectra, transmission electron microscopy (TEM), and extended X-ray absorption fine structure spectroscopy (EXAFS) to determine how As is redistributed during the crystallization process. Results showed that at pH 12, a quarter of the added As was still left in the liquid phase with the formation of goethite and hematite as the major and minor product. The concentration of As was found to be the lowest at pH 4 which is independent of the reaction media, indicating the importance of pH value in the crystallization process of the As adsorbed FeIII oxyhydroxides. Under acidic conditions, sulfate and chloride media favored the formation of goethite and hematite, respectively. Arsenic can indeed be incorporated into the structure of the formed goethite at pH 4. The morphology of the formed products changed to rhombus-like particles if both goethite and hematite appeared as the later as the dominant product.

9.
Angew Chem Int Ed Engl ; 62(38): e202309005, 2023 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-37525962

RESUMO

Electrobiocorrosion, the process in which microbes extract electrons from metallic iron (Fe0 ) through direct Fe0 -microbe electrical connections, is thought to contribute to the costly corrosion of iron-containing metals that impacts many industries. However, electrobiocorrosion mechanisms are poorly understood. We report here that electrically conductive pili (e-pili) and the conductive mineral magnetite play an important role in the electron transfer between Fe0 and Geobacter sulfurreducens, the first microbe in which electrobiocorrosion has been rigorously documented. Genetic modification to express poorly conductive pili substantially diminished corrosive pitting and rates of Fe0 -to-microbe electron flux. Magnetite reduced resistance to electron transfer, increasing corrosion currents and intensifying pitting. Studies with mutants suggested that the magnetite promoted electron transfer in a manner similar to the outer-surface c-type cytochrome OmcS. These findings, and the fact that magnetite is a common product of iron corrosion, suggest a potential positive feedback loop of magnetite produced during corrosion further accelerating electrobiocorrosion. The interactions of e-pili, cytochromes, and magnetite demonstrate mechanistic complexities of electrobiocorrosion, but also provide insights into detecting and possibly mitigating this economically damaging process.


Assuntos
Óxido Ferroso-Férrico , Geobacter , Oxirredução , Elétrons , Corrosão , Transporte de Elétrons , Citocromos/metabolismo , Ferro , Geobacter/genética , Geobacter/metabolismo
10.
Nat Prod Rep ; 40(9): 1464-1478, 2023 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-37070562

RESUMO

Covering: up to 202216.19% of reported natural products (NPs) in the Dictionary of Natural Products (DNP) are glycosides. As one of the most important NPs' structural modifications, glycosylation can change the NPs' polarity, making the aglycones more amphipathic. However, until now, little is known about the general distribution profile of the natural glycosides in different biological sources or structural types. The reason, structural or species preferences of the natural glycosylation remain unclear. In this highlight, chemoinformatic methods were employed to analyze the natural glycosides from DNP, the most comprehensively annotated NP database. We found that the glycosylation ratios of NPs from plants, bacteria, animals and fungi decrease successively, which are 24.99%, 20.84%, 8.40% and 4.48%, respectively. Echinoderm-derived NPs (56.11%) are the most frequently glycosylated, while those produced by molluscs (1.55%), vertebrates (2.19%) and Rhodophyta (3.00%) are the opposite. Among the diverse structural types, a large proportion of steroids (45.19%), tannins (44.78%) and flavonoids (39.21%) are glycosides, yet aminoacids and peptides (5.16%), alkaloids (5.66%) are comparatively less glycosylated. Even within the same biological source or structural type, their glycosylation rates fluctuate drastically between sub- or cross-categories. The substitute patterns of flavonoid and terpenoid glycosides and the most frequently glycosylated scaffolds were identified. NPs with different glycosylation levels occupy different chemical spaces of physicochemical property and scaffold. These findings could help us to interpret the preference of NPs' glycosylation and investigate how NP glycosylation could aid NP-based drug discovery.


Assuntos
Produtos Biológicos , Glicosídeos , Animais , Glicosídeos/química , Quimioinformática , Flavonoides/química , Plantas , Extratos Vegetais , Produtos Biológicos/química
11.
Molecules ; 28(6)2023 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-36985412

RESUMO

Vancomycin (VAN), meropenem (MER), and valproate (VPA) are commonly used to treat intracranial infection post-craniotomy and prevent associated epilepsy. To monitor their levels, we developed a novel bioassay based on liquid chromatography-tandem mass spectrometry (LC-MS/MS) for simultaneous determination of these three drugs in human serum and cerebrospinal fluid (CSF). Sample preparation by protein precipitation using acetonitrile was followed by HPLC on a Zorbax 300SB-C8 column (150 mm × 4.6 mm, 5 µm) maintained at 40 °C. The lower limit of quantification (LLOQ) was 5 ng/mL for MER, 0.1 µg/mL for VAN, and 1 µg/mL for VPA in serum and 50 ng/mL for MER, 1 µg/mL for VAN, and 2 µg/mL for VPA in CSF. This method was validated with satisfactory linearity, sensitivity, precision, accuracy, recovery, matrix effects, and stability for all analytes. The assay was then successfully applied to evaluate VPA, MER, and VAN levels in serum and CSF from patients with intracranial infection administrated by intrathecal injection. Compared with intravenous injections, an intrathecal injection can provide sufficient therapeutic effects even if the CSF levels did not reach the effective concentration reported. Our method provided a detection tool to study the effective concentrations of these three drugs in CSF from patients administered via intrathecal injection.


Assuntos
Ácido Valproico , Vancomicina , Humanos , Ácido Valproico/química , Cromatografia Líquida de Alta Pressão/métodos , Meropeném , Cromatografia Líquida , Espectrometria de Massas em Tandem/métodos , Limite de Detecção , Reprodutibilidade dos Testes
12.
Cell Oncol (Dordr) ; 46(3): 735-744, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36913067

RESUMO

PURPOSE: Methylenetetrahydrofolate dehydrogenase (MTHFD1), a key enzyme on the folate pathway, has been implicated in the tumor development of distinct types of cancers. The single nucleotide polymorphism (SNP) of 1958G > A mutation in the coding region of MTHFD1 (arginine 653 is mutated into glutamine) has been detected in a significant proportion of clinical samples of hepatocellular carcinoma (HCC). METHODS : Hepatoma cell lines, 97H and Hep3B were used. The expression of MTHFD1 and SNP mutation protein was determined by immunoblotting analysis. The protein ubiquitination of MTHFD1 was detected by immunoprecipitation analysis. The post-translational modification sites and interacting proteins of MTHFD1 in the presence of G1958A SNP were identified by mass spectrometry. Metabolic flux analysis was used to detect the synthesis of relevant metabolites sourced from serine isotope. RESULTS: The present study showed G1958A SNP of MTHFD1, encoding MTHFD1 R653Q, was associated with the attenuated protein stability caused by ubiquitination-mediated protein degradation. Mechanistically, MTHFD1 R653Q displayed an enhanced binding to the E3 ligase TRIM21, which was responsible for the augmented ubiquitination, and MTHFD1 K504 was identified to be the primary ubiquitination site. The subsequent metabolite analysis revealed MTHFD1 R653Q resulted in the repressed flux of serine-derived methyl group into metabolite precursors for purine synthesis, and the compromised purine synthesis was demonstrated to be responsible for the impeded growth capability in MTHFD1 R653Q-expressing cells. Moreover, the suppressive effect of MTHFD1 R653Q expression in tumorigenesis was verified by xenograft analysis, and the relationship between MTHFD1 G1958A SNP and its protein levels was revealed in clinical human liver cancer specimens. CONCLUSION: Our results uncovered an unidentified mechanism underlying of the impact of G1958A SNP on MTHFD1 protein stability and tumor metabolism in HCC. which provides a molecular basis for the according clinical management when considering MTHFD1 as a therapeutic target.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Metilenotetra-Hidrofolato Desidrogenase (NADP)/genética , Metilenotetra-Hidrofolato Desidrogenase (NADP)/metabolismo , Predisposição Genética para Doença , Polimorfismo de Nucleotídeo Único , Antígenos de Histocompatibilidade Menor/genética
14.
iScience ; 25(9): 105007, 2022 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-36097615

RESUMO

Jingmen tick virus (JMTV) is a novel tick-borne segmented RNA virus that is closely related to un-segmental RNA virus in evolution. It has been confirmed that JMTV could be a causative agent of human disease. In this study, a total of 3658 ticks were sampled from 7 provinces of China and then divided into 545 pools according to the location and species. QRT-PCR and nested PCR were performed to confirm the presence of JMTV. The results showed JMTV was identified in 5 out of 7 provinces with an average infection rate of 1.4% (51/3658). Phylogenetic analysis indicated that all JMTV strains identified in this study were closely related to each other and formed a well-supported sub-lineage. Our results provide molecular evidence of JMTV in different species of ticks from endemic and non-endemic regions and demonstrate that JMTV, as a natural foci pathogen, may be widely distributed all over China.

15.
Langmuir ; 38(27): 8241-8251, 2022 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-35772102

RESUMO

The scarcity of water resources has led to widespread interest in the treatment of oily wastewater. This study prepared a novel superhydrophilic/underwater superoleophobic polysulfonamide (PSA)/polyvinylpyrrolidone (PVP) nanofibrous membrane through electrostatic spinning for efficient oil-water emulsion separation. The surface morphology, fiber diameter distribution, wettability properties, and oil-water emulsion separation performance of the membranes were investigated. Results showed that the addition of PVP increases the diameter of the fibers, which led to a loose, large, porous structure and improved the permeability of the membranes. A high pure-water flux of 2057 L·m-2·h-1 was obtained for membranes with PVP addition of 3 wt%, providing an 835% increase in pure-water flux compared with a pure PSA nanofibrous membrane (220 L·m-2·h-1). For n-hexane-in-water emulsions, the optimum membrane obtained a high separation efficiency of 99.7%, in which flux was 1.5 times greater than that of the pure PSA nanofibrous membrane. Moreover, the optimum membrane exhibited good recycling stability and solvent resistance. The as-prepared PSA/PVP nanofibrous membrane displayed high permeability, an outstanding rejection rate, resistance to organic solvents, and reusability for oil-water separation, providing great potential in practical membrane separation applications.

16.
J Pharm Biomed Anal ; 219: 114907, 2022 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-35772235

RESUMO

Ceramides (CERs) and dihydroceramides (dhCERs) are biologically active lipids involved in cell proliferation, differentiation, and apoptosis, as well as associated with infectious diseases. The concentration of CERs and dhCERs in the cerebrospinal fluid (CSF) could potentially allow the distinction of patients with intracranial infection (ICI) after craniotomy from controls, but the quantification is limited by their ultralow concentrations. Therefore, a novel high performance liquid chromatography-triple-quadrupole/time-of-flight mass spectrometry (HPLC-QTOF-MS) with Sequential Window Acquisition of All Theoretical Fragment Ion Spectra (SWATH) was applied to measure CERs and dhCERs in CSF, since it possesses a higher sensitivity (LLOQ = 0.1 pmol/mL) than the multiple reaction monitoring (MRM) acquisition carried on triple quadrupole (QqQ) MS. This method was validated and applied to CSF samples from patients who experienced postoperative ICI (63 patients) and controls who did not experience it after surgery (62 patients). This assay was linear over the measuring range 0.1-100 pmol/mL for these CER and dhCER species with good accuracy and precision. Elevated CERs and dhCERs were observed in CSF from patients who experienced postoperative ICI. CER 16:0 was found with a clinical sensitivity of 93.65 % and specificity of 87.1 % in distinguishing the 63 patients with ICI from the 62 controls. Therefore, this method could be applied in the detection of CERs and dhCERs in CSF, which were correlated with the presence of ICI.


Assuntos
Ceramidas , Craniotomia , Cromatografia Líquida de Alta Pressão , Craniotomia/efeitos adversos , Humanos , Espectrometria de Massas
17.
Water Res ; 221: 118778, 2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-35752093

RESUMO

The electrochemical oxidation method is a promising technology for the degradation of perfluorooctane sulfonate (PFOS). However, the elimination processes of PFOS are still unknown, including the electron transfer pathway, key reactive sites, and degradation mechanism. Here, we fabricated diatomite and cerium (Ce) co-modified Sb2O3 (D-Ce/Sb2O3) anode to realize efficient degradation of PFOS via peroxymonosulfate (PMS) activation. The transferred electron and the generated hydroxyl radical (•OH) can high-effectively decompose PFOS. The electron can be rapidly transferred from the highest occupied molecular orbital of the PFOS to the lowest unoccupied molecular orbital of the PMS via the D-Ce/Sb2O3 driven by a potential energy difference under electrochemical process. The active site of Ce-O in the D-Ce/Sb2O3 can greatly reduce the migration distance of the electron and the •OH, and thus improving the catalytic activity for degrading various organic micropollutants with high stability. In addition, the electrochemical process shows strong resistance and tolerance to the changing pH, inorganic ions, and organic matter. This study offers insights into the electron transfer pathway and PMS activation mechanism in PFOS removal via electrochemical oxidation, paving the way for its potential application in water purification.


Assuntos
Ácidos Alcanossulfônicos , Poluentes Químicos da Água , Domínio Catalítico , Fluorocarbonos , Peróxidos/química , Água , Poluentes Químicos da Água/química
18.
Water Res ; 219: 118553, 2022 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-35561622

RESUMO

Shewanella oneidensis MR-1 is an attractive model microbe for elucidating the biofilm-metal interactions that contribute to the billions of dollars in corrosion damage to industrial applications each year. Multiple mechanisms for S. oneidensis-enhanced corrosion have been proposed, but none of these mechanisms have previously been rigorously investigated with methods that rule out alternative routes for electron transfer. We found that S. oneidensis grown under aerobic conditions formed thick biofilms (∼50 µm) on stainless steel coupons, accelerating corrosion over sterile controls. H2 and flavins were ruled out as intermediary electron carriers because stainless steel did not reduce riboflavin and previous studies have demonstrated stainless does not generate H2. Strain ∆mtrCBA, in which the genes for the most abundant porin-cytochrome conduit in S. oneidensis were deleted, corroded stainless steel substantially less than wild-type in aerobic cultures. Wild-type biofilms readily reduced nitrate with stainless steel as the sole electron donor under anaerobic conditions, but strain ∆mtrCBA did not. These results demonstrate that S. oneidensis can directly consume electrons from iron-containing metals and illustrate how direct metal-to-microbe electron transfer can be an important route for corrosion, even in aerobic environments.


Assuntos
Elétrons , Aço Inoxidável , Biofilmes , Corrosão , Transporte de Elétrons , Metais , Oxirredução , Aço
19.
Food Chem ; 386: 132751, 2022 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-35334319

RESUMO

Fluoroquinolones, a family of synthetic broad-spectrum antibiotics, are widely used in clinical medicine, farm animals and aquaculture. Residues of fluoroquinolones in samples have attracted much attention because of growing food safety and public health concerns. Here, a novel Tb3+ ion-enrofloxacin aptamer coordination probe was prepared to develop a sensitive and rapid label-free fluorescence assay for specific detection three fluoroquinolones. In presence of the target, Tb3+ ion- enrofloxacin aptamer probe specifically bound with enrofloxacin, norfloxacin and ciprofloxacin, leading to a sharp increase in fluorescence emission of the probe. Under the optimized conditions, fluorescence increased linearly in the 1.0-100.0 ng/mL range for the three fluoroquinolones, with 0.053 ng/mL limit of detection for ciprofloxacin, 0.020 ng/mL limit of detection for norfloxacin and 0.061 ng/mL limit of detection for enrofloxacin. Satisfactory recovery (80.10-102.48%) in spiked honey and water samples were obtained for the three fluoroquinolones with relative standard deviations between 0.21% and 5.44% (n = 3).


Assuntos
Fluoroquinolonas , Mel , Animais , Antibacterianos , Ciprofloxacina , Enrofloxacina , Norfloxacino , Térbio/química , Água
20.
Water Res ; 215: 118259, 2022 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-35294910

RESUMO

Polyfluoroalkyl and perfluoroalkyl chemicals (PFCs) widely used in lubricants, surfactant, textiles, paper coatings, cosmetics, and fire-fighting foams can release a large deal of organics contaminants into wastewater and pose great risks to the health of humans and eco-environments. Although advanced oxidation processes can effectively deconstruct various organic contaminants via reactive radicals, the stable structure of PFCs makes it difficult to be degraded. Here, we confirm that electrochemical oxidation process coupled with peroxymonosulfate (PMS) reaction can efficiently destroy stable structure of PFCs via electron transfer and meanwhile completely degrade PFCs via generated active radicals. We further studies via capturing and scavenging radicals, and DFT calculations find that electron hydroxyl radials play a dominant role in degrading PFCs. Based on the calculations of adsorption energy and molecular orbital energy we further demonstrate that many active sites on the surface of Ti4O7 (1 0 4) plane can rapidly take part in electrochemical reaction for generating radials and removing organic contaminants. These results give a promising insight towards high-effective and deep degradation of PFCs via electrochemical reaction coupled with advanced oxidation processes, as well as providing guidance and technical support for the remove of multiple organic contaminants.


Assuntos
Ácidos Alcanossulfônicos , Fluorocarbonos , Transporte de Elétrons , Elétrons , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA