Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Adv Sci (Weinh) ; 10(2): e2203395, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36461756

RESUMO

The invention of general anesthesia (GA) represents a significant advance in modern clinical practices. However, the exact mechanisms of GA are not entirely understood. Because of the multitude of similarities between GA and sleep, one intriguing hypothesis is that anesthesia may engage the sleep-wake regulation circuits. Here, using fiber photometry and micro-endoscopic imaging of Ca2+ signals at both population and single-cell levels, it investigates how various anesthetics modulate the neural activity in the ventrolateral preoptic nucleus (vLPO), a brain region essential for the initiation of sleep. It is found that different anesthetics primarily induced suppression of neural activity and tended to recruit a similar group of vLPO neurons; however, each anesthetic caused comparable modulations of both wake-active and sleep-active neurons. These results demonstrate that anesthesia creates a different state of neural activity in the vLPO than during natural sleep, suggesting that anesthesia may not engage the same vLPO circuits for sleep generation.


Assuntos
Anestesia , Anestésicos , Sono/fisiologia , Área Pré-Óptica/fisiologia , Anestésicos/farmacologia , Neurônios/fisiologia
2.
J Dairy Sci ; 103(7): 6661-6671, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32359993

RESUMO

The CD44 gene encodes a cell-surface glycoprotein that participates in a variety of biological processes such as cell interactions, adhesion, hematopoiesis, and tumor metastasis. We compared the transcriptome in bovine mammary epithelial cells (bMEC) of Chinese Holstein dairy cows producing milk of high and low fat contents. Our results suggest that CD44 might be a candidate gene affecting milk fat synthesis. In the present study, the overexpression of the CD44 gene increased the contents of intracellular triglycerides (TG) and cholesterol (CHOL), whereas knockdown of the CD44 gene decreased bMEC CHOL and TG contents. Gas chromatography analysis of fatty acid composition showed that the contents of α-linolenic acid, palmitic acid, and cis-8,11,14-eicosatrienoic acid were altered due to changes in the level of expression of the CD44 gene. Additionally, elaidic acid, palmitoleic acid, tridecanoic acid, and oleic acid were markedly reduced in the CD44 gene overexpression group compared with the control group. On the contrary, cis-5,8,11,14-eicosatetraenoic acid and stearic acid were markedly increased in the CD44 knockdown group compared with the control group. And RT2 Profiler PCR array (Qiagen, CLAB24070A Frankfurt, Germany) further suggested that overexpression or knockdown of the CD44 gene altered expression levels of functional genes associated with lipid metabolism. The present data indicate that CD44 plays a key regulatory role in lipid metabolism in bMEC.


Assuntos
Bovinos/genética , Receptores de Hialuronatos/genética , Metabolismo dos Lipídeos/genética , Glândulas Mamárias Animais/metabolismo , Leite/metabolismo , Animais , Bovinos/metabolismo , Contagem de Células , Colesterol/metabolismo , Células Epiteliais/metabolismo , Ácidos Graxos/metabolismo , Ácidos Graxos Monoinsaturados/metabolismo , Feminino , Alemanha , Receptores de Hialuronatos/fisiologia , Glândulas Mamárias Animais/citologia , Triglicerídeos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA