Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Small ; : e2304787, 2024 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-38243886

RESUMO

In the quest for advanced memristor technologies, this study introduces the synthesis of delta-formamidinium lead iodide (δ-FAPbI3 ) nanoparticles (NPs) and their self-assembly into nanorods (NRs). The formation of these NRs is facilitated by iodide vacancies, promoting the fusion of individual NPs at higher concentrations. Notably, these NRs exhibit robust stability under ambient conditions, a distinctive advantage attributed to the presence of capping ligands and a crystal lattice structured around face-sharing octahedra. When employed as the active layer in resistive random-access memory devices, these NRs demonstrate exceptional bipolar switching properties. A remarkable on/off ratio (105 ) is achieved, surpassing the performances of previously reported low-dimensional perovskite derivatives and α-FAPbI3 NP-based devices. This enhanced performance is attributed to the low off-state current owing to the reduced number of halide vacancies, intrinsic low dimensionality, and the parallel alignment of NRs on the FTO substrate. This study not only provides significant insights into the development of superior materials for memristor applications but also opens new avenues for exploring low-dimensional perovskite derivatives in advanced electronic devices.

2.
Clin Oral Investig ; 27(12): 7799-7807, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37919552

RESUMO

OBJECTIVE: The aim of this in vitro study was to evaluate the effect of an oxide nanocoating to prevent colour degradation of maxillofacial silicone elastomers following accelerated ageing. MATERIAL AND METHODS: Specimens (N = 40) of specified dimensions were fabricated in Factor II room temperature vulcanizing (RTV) silicone and processed according to the manufacturer's instructions. Two groups were classified with 20 specimens each. Specimens in the first group were coated with titanium dioxide (TiO2) by atomic layer deposition technology. The colour stability test was conducted with a UV-VIS spectrometer (Schimadzu) for both titanium dioxide nanocoated and uncoated specimen groups after subjecting them to accelerated ageing. It was analysed using the CIE L*a*b method. RESULTS: The average colour change was highest for uncoated specimens (2.868), and the average colour change for titanium dioxide-coated specimens was significantly low (1.774). The average colour change of uncoated specimens (2.868) was close to the acceptable threshold value (3), and that of coated specimens (1.774) was far below the acceptable threshold (3). CONCLUSIONS: The colour change that occurred in titanium dioxide nanocoated specimens following accelerated ageing was significantly lower than that in the uncoated group, showing that the TiO2 nanocoating was effective in reducing the colour degradation of silicone elastomers. CLINICAL RELEVANCE: Maxillofacial prostheses fabricated from silicone elastomers go through undesirable colour degradation over time. The development of a scientific technique that retards the colour deterioration of silicone prostheses would be of great clinical significance.


Assuntos
Elastômeros de Silicone , Cor , Temperatura , Teste de Materiais
3.
Sci Rep ; 10(1): 12450, 2020 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-32709849

RESUMO

Brain-inspired computation that mimics the coordinated functioning of neural networks through multitudes of synaptic connections is deemed to be the future of computation to overcome the classical von Neumann bottleneck. The future artificial intelligence circuits require scalable electronic synapse (e-synapses) with very high bit densities and operational speeds. In this respect, nanostructures of two-dimensional materials serve the purpose and offer the scalability of the devices in lateral and vertical dimensions. In this work, we report the nonvolatile bipolar resistive switching and neuromorphic behavior of molybdenum disulfide (MoS2) quantum dots (QD) synthesized using liquid-phase exfoliation method. The ReRAM devices exhibit good resistive switching with an On-Off ratio of 104, with excellent endurance and data retention at a smaller read voltage as compared to the existing MoS2 based memory devices. Besides, we have demonstrated the e-synapse based on MoS2 QD. Similar to our biological synapse, Paired Pulse Facilitation / Depression of short-term memory has been observed in these MoS2 QD based e-synapse devices. This work suggests that MoS2 QD has potential applications in ultra-high-density storage as well as artificial intelligence circuitry in a cost-effective way.

4.
Nanotechnology ; 29(49): 495202, 2018 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-30289766

RESUMO

Resistive Random Access Memory (ReRAM) has emerged as the successor to FLASH in memory technology due to its multi-level fabrication possibilities and prospects of scaling down virtually to atomic dimensions. However, as we report here, when polycrystalline switching materials are used, the ReRAM devices scaled down to the sub-5 nm2 area show complete randomness due to inhomogeneous conductance values of grains and grain boundaries. By measuring the switching properties of grains and grain boundaries individually using a scanning tunneling microscope, we demonstrate that the doublet and triplet grain boundaries behave like degenerate semiconductors and act as conduction channels that bypass the resistive switching of the devices. Fabricating virtual devices using gold clusters deposited on top, we show that the random distribution of such highly conducting grain boundaries reduces the reliability of nano-scale ReRAM devices when scaled down to the sub-10 nm scale.

5.
Nanotechnology ; 28(15): 155201, 2017 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-28230536

RESUMO

Chemically reduced graphene oxide (rGO) samples with various degrees of reduction were prepared using hydrazine hydrate as the reducing agent. Scanning tunnelling microscope imaging shows that rGO contains rows of randomly distributed patches of epoxy groups. The local density of states of the rGO samples were mapped with scanning tunnelling spectroscopy, which shows that the bandgap in rGO originates from the epoxide regions itself. The Fermi level of the epoxide regions is shifted towards the valence band, making rGO locally p-type and a range of bandgaps from 0-2.2 eV was observed in these regions. Thin film transistors were fabricated using rGO as the channel layer. The devices show excellent output characteristics with clear saturation and gate dependence. The transfer characteristics show that rGO behaves as a p-type semiconductor; the devices exhibit an on/off ratio of 104, with a low-bias hole mobility of 3.9 cm2 V-1 s-1.

6.
Phys Chem Chem Phys ; 16(45): 25093-100, 2014 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-25331299

RESUMO

Nanostructured ZnO is a promising material for optoelectronic and nonlinear optical applications because of the flexibility of band gap engineering by means of various defect states present in it. Employing the time-correlated single photon counting photoluminescence technique, the correlation between defect levels and optoelectronic and nonlinear optical properties of ZnO is explored in this work. By a facile solution method, ZnO nanocones with a dominating preferential orientation along energetically less favorable, oxygen terminated (10̄11) facets were synthesized using a passivating capping agent. Photoluminescence spectra demonstrate that the as-grown samples have both oxygen and zinc vacancies, and after calcination in air oxygen vacancies vanish, but zinc vacancies are enhanced. Photoconductivity of the samples reduces significantly upon calcination, confirming the reduction in oxygen vacancies. However, the samples exhibit a significant enhancement in the nonlinear optical absorption coefficient upon calcination, indicating that the effective two-photon absorption causing the nonlinear optical behaviour originates from zinc vacancies. These results illustrate the vast possibilities of band gap engineering in intrinsic ZnO for future optoelectronic applications.

7.
Phys Chem Chem Phys ; 15(18): 6763-8, 2013 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-23546181

RESUMO

Zinc sulfide (ZnS) thin films have been synthesized by spray pyrolysis at 310 °C using an aqueous solution of zinc chloride (ZnCl2) and thioacetamide (TAA). Highly crystalline films were obtained by applying TAA instead of thiourea (TU) as the sulfur source. X-ray diffraction (XRD) analyses show that the films prepared by TAA contained a wurtzite structure, which is usually a high temperature phase of ZnS. The crystallinity and morphology of the ZnS films appeared to have a strong dependence on the spray rate as well. The asymmetric polar structure of the TAA molecule is proposed to be the intrinsic reason of the formation of highly crystalline ZnS at comparatively low temperatures. The violet and green emissions from photoluminescence (PL) spectroscopy reflected the sulfur and zinc vacancies in the film. Accordingly, the photodetectors fabricated using these films exhibit excellent response to green and red photons of 525 nm and 650 nm respectively, though the band gaps of the materials, estimated from optical absorption spectroscopy, are in the range of 3.5-3.6 eV.

8.
Phys Chem Chem Phys ; 14(13): 4614-9, 2012 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-22354387

RESUMO

The enhanced electron field emission (EFE) properties of high aspect ratio, vertically aligned SiNW-ZnO core-shell arrays are presented. These core-shell arrays are prepared by a thin, controlled, highly crystalline and conformal coating of zinc oxide as shell using the plasma assisted-atomic layer deposition (PA-ALD) route on vertically aligned silicon nanowire arrays core. The core-shell nanostuctures are confirmed by HRTEM imaging along with the individual elemental mapping demonstrating the conformal deposition of 10 nm ZnO on the SiNWs. EFE properties of va-SiNW-ZnO core-shell arrays showed a high emission current density of 51 µA cm(-2) and a low turn on field of 7.6 V µm(-1) (defined at a current density of 1 µA cm(-2)) compared to the 3.2 µA cm(-2) emission current density and 9.1 V µm(-1) turn on field for SiNWs. The field enhancement factor (ß) of 4227 for the devices demonstrates that these core-shell nanowire arrays are excellent field-emitters. Such an enhancement in the field emission originates from the details of the band structure of this peculiar material combination resulting in good electron transport from SiNW to ZnO as evident from the band diagram of the core-shell material. This is further supported by the conducting AFM studies where lowering in threshold voltage by 1 eV confirms the role of ZnO coating in the enhancement of the emission characteristics.


Assuntos
Nanofios/química , Silício/química , Óxido de Zinco/química , Condutividade Elétrica , Elétrons , Tamanho da Partícula , Propriedades de Superfície
9.
Phys Rev Lett ; 101(3): 036101, 2008 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-18764266

RESUMO

The behavior of water under extreme confinement and, in particular, the lubrication properties under such conditions are subjects of long-standing controversy. Using a dedicated, high-resolution friction force microscope, scanning a sharp tungsten tip over a graphite surface, we demonstrate that water nucleating between the tip and the surface due to capillary condensation rapidly transforms into crystalline ice at room temperature. At ultralow scan speeds and modest relative humidities, we observe that the tip exhibits stick-slip motion with a period of 0.38+/-0.03 nm, very different from the graphite lattice. We interpret this as the consequence of the repeated sequence of shear-induced fracture and healing of the crystalline condensate. This phenomenon causes a significant increase of the friction force and introduces relaxation time scales of seconds for the rearrangements after shearing.

10.
Phys Rev Lett ; 96(16): 166103, 2006 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-16712250

RESUMO

We present atomic-scale friction force measurements that strongly suggest that the capillary condensation of water between a tungsten tip and a graphite surface leads to the formation of ice at room temperature. This phenomenon increases the friction force, introduces a short-term memory in the form of an elastic response against shearing, and allows us to "write" a temporary line of ice on a hydrophobic surface. Rearrangements of the condensate are shown to take place on a surprisingly slow time scale of seconds.

11.
Phys Rev E Stat Nonlin Soft Matter Phys ; 71(6 Pt 2): 065101, 2005 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-16089798

RESUMO

Atomic-scale friction, as accessed in tip-based experiments, is investigated theoretically in the full range of surface corrugations, temperatures, and velocities. Emphasis is given to the regime of thermal drift, when the regular stick-slip behavior is completely ruined by thermal effects. The possibility of nearly vanishing friction ("thermolubricity") is predicted even for strong (overcritical) surface corrugations, when traditional models would predict significant friction. The manifestation of this effect in recently published experimental data is demonstrated.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA