Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 9353, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38654025

RESUMO

Welding process, as one of the crucial industrial technologies in ship construction, accounts for approximately 70% of the workload and costs account for approximately 40% of the total cost. The existing welding quality prediction methods have hypothetical premises and subjective factors, which cannot meet the dynamic control requirements of intelligent welding for processing quality. Aiming at the low efficiency of quality prediction problems poor timeliness and unpredictability of quality control in ship assembly-welding process, a data and model driven welding quality prediction method is proposed. Firstly, the influence factors of welding quality are analyzed and the correlation mechanism between process parameters and quality is determined. According to the analysis results, a stable and reliable data collection architecture is established. The elements of welding process monitoring are also determined based on the feature dimensionality reduction method. To improve the accuracy of welding quality prediction, the prediction model is constructed by fusing the adaptive simulated annealing, the particle swarm optimization, and the back propagation neural network algorithms. Finally, the effectiveness of the prediction method is verified through 74 sets of plate welding experiments, the prediction accuracy reaches over 90%.

2.
Materials (Basel) ; 15(9)2022 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-35591494

RESUMO

In order to improve the forming quality of extruded thread, finite element analysis and experimental research are combined to reduce the two keys that affect thread quality in the machining process-extrusion torque and extrusion temperature. The effects of different processing parameters on the extrusion torque and temperature are obtained by numerical simulation, including the bottom hole diameter of the workpiece, the machine tool speed, and the lubrication medium. For the purpose of reducing extrusion torque and temperature, the process parameters for internal thread forming are further optimized by orthogonal design. It is determined that when machining the M22 × 2 internal thread on the connecting rod of the marine diesel engine made of 42CrMo4 steel, the bottom hole diameter of the workpiece should be 21.20 mm, the speed of the machine tool should be 40 RPM, and the lubricating medium should be PDMS polydimethylsiloxane coolant. Compared to before optimization, the maximum extrusion torque and the maximum extrusion temperature are reduced by 19.27% and 15.07%, respectively. On the premise of ensuring the thread connection strength, the height of the thread tooth is reduced by 0.052 mm, and the surface condition of the thread is improved. The surface microhardness at the root, top, and side of the thread increases by about 5 HV0.2, and the depth of the hardened layer increases by 0.05 mm. The results show that the quality of the optimized thread is higher.

3.
Sci Rep ; 12(1): 2911, 2022 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-35190625

RESUMO

In the process design and reuse of marine component products, there are a lot of heterogeneous models, causing the problem that the process knowledge and process design experience contained in them are difficult to express and reuse. Therefore, a process knowledge representation model for ship heterogeneous model is proposed in this paper. Firstly, the multi-element process knowledge graph is constructed, and the heterogeneous ship model is described in a unified way. Then, the multi-strategy ontology mapping method is applied, and the semantic expression between the process knowledge graph and the entity model is realized. Finally, by obtaining implicit semantics based on case-based reasoning and checking the similarity of the matching results, the case knowledge reuse is achieved, to achieve rapid design of the process. This method provides reliable technical support for the design of ship component assembly and welding process, greatly shortens the design cycle, and improves the working efficiency. In addition, taking the double-deck bottom segment of a ship as an example, the process knowledge map of the heterogeneous model is constructed to realize the rapid design of ship process, which shows that the method can effectively acquire the process knowledge in the design case and improve the efficiency and intelligence of knowledge reuse in the process design of the heterogeneous model of a ship.

4.
Sci Rep ; 11(1): 21983, 2021 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-34754070

RESUMO

The processing quality of the block hole system affects the working performance of the marine diesel engine block directly. Choosing an appropriate combination of process parameters is a prerequisite to improving the accuracy of the block hole system. Uncertain fluctuations of process parameters during the machining process would affect the process reliability of the block hole system, resulting in an ultra-poor accuracy. For this reason, the RBF method is used to establish the relationship between the verticality of the cylinder hole and process parameters, including cutting speed, depth of cut, and feed rate. The minimum cylinder hole verticality is taken as the goal and the process reliability constraints of the cylinder hole are set based on Monte Carlo, a reliability optimization model of processing parameters for cylinder hole is established in this paper. Meanwhile, an improved particle swarm algorithm was designed to solve the model, and eventually, the global optimal combination of process parameters for the cylinder hole processing of the diesel engine block in the reliability stable region was obtained.

5.
Sci Rep ; 11(1): 17000, 2021 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-34417506

RESUMO

In recent years, considerable attention has been paid in time-frequency analysis (TFA) methods, which is an effective technology in processing the vibration signal of rotating machinery. However, TFA techniques are not sufficient to handle signals having a strong non-stationary characteristic. To overcome this drawback, taking short-time Fourier transform as a link, a TFA methods that using the generalized Warblet transform (GWT) in combination with the second order synchroextracting transform (SSET) is proposed in this study. Firstly, based on the GWT and SSET theories, this paper proposes a method combining the two TFA methods to improve the TFA concentration, named GWT-SSET. Secondly, the method is verified numerically with single-component and multi-component signals, respectively. Quantized indicators, Rényi entropy and mean relative error (MRE) are used to analyze the concentration of TFA and accuracy of instantly frequency (IF) estimation, respectively. Finally, the proposed method is applied to analyze nonstationary signals in variable speed. The numerical and experimental results illustrate the effectiveness of the GWT-SSET method.

6.
Materials (Basel) ; 12(19)2019 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-31547529

RESUMO

The hard turning process has been widely used in the field of hard material precision machining because of its high efficiency, low processing residual stress, and low environmental pollution. Due to its undesirably processing quality, it is still not a substitute for traditional grinding, so many studies have reported that the process has been optimized. However, there has been little research on the geometry optimization of hard cutting tools, which have a great influence on the traditional machining process. In this paper, two tools with different rake face shapes are designed. The finite element analysis method is used to compare their performance with a conventional plane tool while turning hardened steel. The results show that the cutting performance of the designed tool T1 and T2 (chip morphology, cutting force, and cutting temperature) and the quality of the machined surface are improved compared with the tool. The cutting force decreased by 12.72% and 14.74%, the cutting temperature decreased by 7.56% and 9.01%, respectively, and the surface residual stress decreased by 26.56% and 28.66%.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA