Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
2.
Nat Commun ; 14(1): 7414, 2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-37973849

RESUMO

Supported metal catalysts often suffer from rapid degradation under harsh conditions due to material failure and weak metal-support interaction. Here we propose using reductive hydrogenated borophene to in-situ synthesize Pt/B/C catalysts with small sizes (~2.5 nm), high-density dispersion (up to 80 wt%Pt), and promising stability, originating from forming Pt-B bond which are theoretically ~5× stronger than Pt-C. Based on the Pt/B/C module, a series (~18 kinds) of carbon supported binary, ternary, quaternary, and quinary Pt intermetallic compound nanocatalysts with sub-4 nm size are synthesized. Thanks to the stable intermetallics and strong metal-support interaction, annealing at 1000 °C does not cause those nanoparticles sintering. They also show much improved activity and stability in electrocatalytic oxygen reduction reaction. Therefore, by introducing the boron chemistry, the hydrogenated borophene derived multielement catalysts enable the synergy of small size, high loading, stable anchoring, and flexible compositions, thus demonstrating high versatility toward efficient and durable catalysis.

3.
Front Plant Sci ; 14: 1144461, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37113601

RESUMO

Introduction: The application of controlled-release nitrogen fertilizer (CRN) has become an important production method to achieve high crop yield and ecological safety. However, the rate of urea-blended CRN for rice is usually determined by conventional urea, and the actual rate is still unclear. Methods: A five-year field experiment was carried out in the Chaohu watershed in the Yangtze River Delta to study rice yield, N fertilizer utilization efficiency (NUE), ammonia (NH3) volatilization and economic benefit under the four urea-blended CRN treatments with a 4:3:3 ratio applied at one time (60, 120, 180, 240 kg/hm2, CRN60, CRN120, CRN180, CRN240), four conventional N fertilizer treatments (N60, N120, N180, N240) and a control without N fertilizer (N0). Results and Discussion: The results showed that the N released from the blended CRNs could well satisfy the N demand of rice growth. Similar to the conventional N fertilizer treatments, a quadratic equation was used to model the relationship between rice yield and N rate under the blended CRN treatments. The blended CRN treatments increased rice yield by 0.9-8.2% and NUE by 6.9-14.8%, respectively, compared with the conventional N fertilizer treatments at the same N application rate. The increase in NUE in response to applied blended CRN was related to the reduction in NH3 volatilization. Based on the quadratic equation, the five-year average NUE under the blended CRN treatment was 42.0% when rice yield reached the maximum, which was 28.9% higher than that under the conventional N fertilizer treatment. Among all treatments, CRN180 had the highest yield and net benefit in 2019. Considering the yield output, environmental loss, labor and fertilizer costs, the optimum economic N rate under the blended CRN treatment in the Chaohu watershed was 180-214 kg/hm2, compared with 212-278 kg/hm2 under the conventional N fertilizer treatment. The findings suggest that blended CRN improved rice yield, NUE and economic income while decreasing NH3 volatilization and negative environmental outcomes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA