Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Sci Total Environ ; 782: 146819, 2021 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-33838377

RESUMO

Wetland ecosystems are critical to the regulation of the global carbon cycle, and there is a high demand for data to improve carbon sequestration and emission models and predictions. Decomposition of plant litter is an important component of ecosystem carbon cycling, yet a lack of knowledge on decay rates in wetlands is an impediment to predicting carbon preservation. Here, we aim to fill this knowledge gap by quantifying the decomposition of standardised green and rooibos tea litter over one year within freshwater and coastal wetland soils across four climates in Australia. We also captured changes in the prokaryotic members of the tea-associated microbiome during this process. Ecosystem type drove differences in tea decay rates and prokaryotic microbiome community composition. Decomposition rates were up to 2-fold higher in mangrove and seagrass soils compared to freshwater wetlands and tidal marshes, in part due to greater leaching-related mass loss. For tidal marshes and freshwater wetlands, the warmer climates had 7-16% less mass remaining compared to temperate climates after a year of decomposition. The prokaryotic microbiome community composition was significantly different between substrate types and sampling times within and across ecosystem types. Microbial indicator analyses suggested putative metabolic pathways common across ecosystems were used to breakdown the tea litter, including increased presence of putative methylotrophs and sulphur oxidisers linked to the introduction of oxygen by root in-growth over the incubation period. Structural equation modelling analyses further highlighted the importance of incubation time on tea decomposition and prokaryotic microbiome community succession, particularly for rooibos tea that experienced a greater proportion of mass loss between three and twelve months compared to green tea. These results provide insights into ecosystem-level attributes that affect both the abiotic and biotic controls of belowground wetland carbon turnover at a continental scale, while also highlighting new decay dynamics for tea litter decomposing under longer incubations.


Assuntos
Microbiota , Áreas Alagadas , Austrália , Carbono , Ecossistema , Água Doce , Solo , Chá
2.
Sci Rep ; 11(1): 1188, 2021 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-33441960

RESUMO

Connectivity is fundamentally important for shaping the resilience of complex human and natural networks when systems are disturbed. Ecosystem resilience is, in part, shaped by the spatial arrangement of habitats, the permeability and fluxes between them, the stabilising functions performed by organisms, their dispersal traits, and the interactions between functions and stressor types. Controlled investigations of the relationships between these phenomena under multiple stressors are sparse, possibly due to logistic and ethical difficulties associated with applying and controlling stressors at landscape scales. Here we show that grazing performance, a key ecosystem function, is linked to connectivity by manipulating the spatial configuration of habitats in microcosms impacted by multiple stressors. Greater connectivity enhanced ecosystem function and reduced variability in grazing performance in unperturbed systems. Improved functional performance was observed in better connected systems stressed by harvesting pressure and temperature rise, but this effect was notably reversed by the spread of disease. Connectivity has complex effects on ecological functions and resilience, and the nuances should be recognised more fully in ecosystem conservation.

3.
Front Plant Sci ; 9: 127, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29487606

RESUMO

Seagrass meadows support key ecosystem services, via provision of food directly for herbivores, and indirectly to their predators. The importance of herbivores in seagrass meadows has been well-documented, but the links between food webs and ecosystem services in seagrass meadows have not previously been made explicit. Herbivores interact with ecosystem services - including carbon sequestration, cultural values, and coastal protection. Interactions can be positive or negative and depend on a range of factors including the herbivore identity and the grazing type and intensity. There can be unintended consequences from management actions based on a poor understanding of trade-offs that occur with complex seagrass-herbivore interactions. Tropical seagrass meadows support a diversity of grazers spanning the meso-, macro-, and megaherbivore scales. We present a conceptual model to describe how multiple ecosystem services are influenced by herbivore pressure in tropical seagrass meadows. Our model suggests that a balanced ecosystem, incorporating both seagrass and herbivore diversity, is likely to sustain the broadest range of ecosystem services. Our framework suggests the pathway to achieve desired ecosystem services outcomes requires knowledge on four key areas: (1) how size classes of herbivores interact to structure seagrass; (2) desired community and management values; (3) seagrass responses to top-down and bottom-up controls; (4) the pathway from intermediate to final ecosystem services and human benefits. We suggest research should be directed to these areas. Herbivory is a major structuring influence in tropical seagrass systems and needs to be considered for effective management of these critical habitats and their services.

4.
Sci Total Environ ; 644: 976-981, 2018 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-30743894

RESUMO

Grazing is a pivotal function in many marine systems, conferring resilience to coral reefs by limiting algal overgrowth, but triggering phase shifts on temperate reefs. Thus, changes to consumption rates of grazing species in response to higher future temperatures may have broad ecological consequences. We measured how the consumption rates of a widespread mesograzer (the hermit crab Clibanarius virescens) responded to changing temperatures in the laboratory and applied these findings to model the spatial footprint on grazing animals throughout the Indo-Pacific region under climate change scenarios. We show that mean grazing capacity may increase in shallow coastal areas in the second half of the century. The effects are, however, asymmetrical, with tropical reefs predicted to experience slightly diminished grazing whilst reefs at higher latitudes will be grazed substantially more. Our findings suggest that assessments of the effects of climate change on reef ecosystems should consider how warming affects grazing performance when predicting wider ecological impacts.


Assuntos
Mudança Climática , Recifes de Corais , Crustáceos/fisiologia , Animais , Monitoramento Ambiental , Herbivoria
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA