Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Heliyon ; 10(6): e28042, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38524580

RESUMO

Mass vaccination has proven to be an effective control measure for mitigating the transmission of infectious diseases. Throughout history, various vaccination strategies have been employed to control infections and terminate outbreaks. In this study, we utilized the transmission of COVID-19 as a case study and constructed a stochastic age-structured compartmental model to investigate the effectiveness of different vaccination strategies. Our analysis focused on estimating the outbreak extinction probability under different vaccination scenarios in both homogeneous and heterogeneous populations. Notably, we found that population heterogeneity can enhance the likelihood of outbreak extinction at varying levels of vaccine coverage. Prioritizing vaccinations for individuals with higher infection risk was found to maximize outbreak extinction probability and reduce overall infections, while allocating vaccines to those with higher mortality risk has been proven more effective in reducing deaths. Moreover, our study highlighted the significance of booster doses as the vaccine effectiveness wanes over time, showing that they can significantly enhance the extinction probability and mitigate disease transmission.

2.
Infect Dis Model ; 8(4): 1177-1189, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38074078

RESUMO

Low- and middle-income countries faced significant challenges in accessing COVID-19 vaccines during the early stages of the pandemic. In this study, we utilized an age-structured modeling approach to examine the implications of various vaccination strategies, vaccine prioritization, and vaccine rollout speeds in Thailand, an upper-middle-income country experiencing vaccine shortages during the early stages of the pandemic. The model directly compares the effectiveness of several vaccination strategies, including the heterologous vaccination where CoronaVac (CV) vaccine was administered as the first dose, followed by ChAdOx1 nCoV-19 (AZ) vaccine as the second dose, under varying disease transmission dynamics. We found that the traditional AZ homologous vaccination was more effective than the CV homologous vaccination, regardless of disease transmission dynamics. However, combining CV and AZ vaccines via either parallel homologous or heterologous vaccinations was more effective than relying solely on AZ homologous vaccination. Additionally, prioritizing vaccination for the elderly aged 60 years and above was the most effective way to reduce mortality when community transmission is well-controlled. On the other hand, prioritizing workers aged 20-59 was most effective in lowering COVID-19 cases, irrespective of the transmission dynamics. Lastly, despite the vaccine prioritization strategy, rapid vaccine rollout speeds were crucial in reducing COVID-19 infections and deaths. These findings suggested that in low- and middle-income countries where early access to high-efficacy vaccines might be limited, obtaining any accessible vaccines as early as possible and using them in parallel with other higher-efficacy vaccines might be a better strategy than waiting for and relying solely on higher-efficacy vaccines.

3.
Sci Rep ; 12(1): 2002, 2022 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-35132106

RESUMO

Thailand was the first country reporting the first Coronavirus disease 2019 (COVID-19) infected individual outside mainland China. Here we delineated the course of the COVID-19 outbreak together with the timeline of the control measures and public health policies employed by the Thai government during the first wave of the COVID-19 outbreak in Thailand. Based on the comprehensive epidemiological data, we reconstructed the dynamics of COVID-19 transmission in Thailand using a stochastic modeling approach. Our stochastic model incorporated the effects of individual heterogeneity in infectiousness on disease transmission, which allows us to capture relevant features of superspreading events. We found that our model could accurately capture the transmission dynamics of the first COVID-19 epidemic wave in Thailand. The model predicted that at the end of the first wave, the number of cumulative confirmed cases was 3091 (95%CI: 2782-3400). We also estimated the time-varying reproduction number (Rt) during the first epidemic wave. We found that after implementing the nationwide interventions, the Rt in Thailand decreased from the peak value of 5.67 to a value below one in less than one month, indicating that the control measures employed by the Thai government during the first COVID-19 epidemic wave were effective. Finally, the effects of transmission heterogeneity and control measures on the likelihood of outbreak extinction were also investigated.


Assuntos
COVID-19/epidemiologia , COVID-19/transmissão , Epidemias/prevenção & controle , Modelos Estatísticos , SARS-CoV-2 , Adulto , COVID-19/prevenção & controle , COVID-19/virologia , Controle de Doenças Transmissíveis/métodos , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Processos Estocásticos , Tailândia/epidemiologia , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA