Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
1.
J Cell Sci ; 137(10)2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38660993

RESUMO

Zika virus (ZIKV) has gained notoriety in recent years because there are no targeted therapies or vaccines available so far. Caveolin-1 (Cav-1) in host cells plays crucial functions in the invasion of many viruses. However, its specific involvement in ZIKV infection has remained unclear. Here, we reveal that depleting Cav-1 leads to a substantial reduction in ZIKV RNA levels, protein expression and viral particle production, indicating that ZIKV exploits Cav-1 for its infection. By dissecting each stage of the viral life cycle, we unveil that, unlike its invasion role in many other viruses, Cav-1 depletion selectively impairs ZIKV replication, resulting in altered replication dynamics and reduced strand-specific RNA levels, but does not affect viral entry, maturation and release. These results reveal an unforeseen function of Cav-1 in facilitating ZIKV replication, which provides new insights into the intricate interaction between Cav-1 and ZIKV and underscores Cav-1 as a potential candidate for anti-ZIKV approaches.


Assuntos
Caveolina 1 , RNA Viral , Replicação Viral , Infecção por Zika virus , Zika virus , Caveolina 1/metabolismo , Caveolina 1/genética , Zika virus/fisiologia , Zika virus/metabolismo , Humanos , Infecção por Zika virus/virologia , Infecção por Zika virus/metabolismo , RNA Viral/metabolismo , RNA Viral/genética , Animais , Interações Hospedeiro-Patógeno , Chlorocebus aethiops , Células Vero , Células HEK293 , Internalização do Vírus , Replicação do RNA
2.
J Mol Cell Biol ; 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38429984

RESUMO

The dynamic remodeling of the cytoskeletal network of vimentin intermediate filaments network supports various cellular functions, including cell morphology, elasticity, migration, organelle localization, and resistance against mechanical or pathological stress. Currently available chemicals targeting vimentin predominantly induce network reorganization and shrinkage around the nucleus. Effective tools for long-term manipulation of vimentin network dispersion in living cells are still lacking, limiting in-depth studies on vimentin function and potential therapeutic applications. Here, we verified that a commercially available small molecule, Trametinib, is capable of inducing spatial spreading of the cellular vimentin network without affecting its transcriptional or translational regulation. Further evidence confirmed its low cytotoxicity and similar effects on different cell types. Importantly, Trametinib has no impact on the other two cytoskeletal systems, actin filaments and the microtubule network. Moreover, Trametinib regulates vimentin network dispersion rapidly and efficiently, with effects persisting for up to 48 h after drug withdrawal. We also ruled out the possibility that Trametinib directly affects the phosphorylation level of vimentin. In summary, we identified an unprecedented regulator, Trametinib, capable of spreading the vimentin network toward the cell periphery, and thus complemented the existing repertoire of vimentin remodeling drugs in the field of cytoskeletal research.

3.
Nat Commun ; 15(1): 631, 2024 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-38245527

RESUMO

Lipid droplets (LDs) are dynamic lipid storage organelles that can be degraded by autophagy machinery to release neutral lipids, a process called lipophagy. However, specific receptors and regulation mechanisms for lipophagy remain largely unknown. Here, we identify that ATG14, the core unit of the PI3KC3-C1 complex, also targets LD and acts as an autophagic receptor that facilitates LD degradation. A negative regulator, Syntaxin18 (STX18) binds ATG14, disrupting the ATG14-ATG8 family members interactions and subverting the PI3KC3-C1 complex formation. Knockdown of STX18 activates lipophagy dependent on ATG14 not only as the core unit of PI3KC3-C1 complex but also as the autophagic receptor, resulting in the degradation of LD-associated anti-viral protein Viperin. Furthermore, coronavirus M protein binds STX18 and subverts the STX18-ATG14 interaction to induce lipophagy and degrade Viperin, facilitating virus production. Altogether, our data provide a previously undescribed mechanism for additional roles of ATG14 in lipid metabolism and virus production.


Assuntos
Gotículas Lipídicas , Metabolismo dos Lipídeos , Gotículas Lipídicas/metabolismo , Metabolismo dos Lipídeos/fisiologia , Proteínas/metabolismo , Autofagia/fisiologia
4.
Curr Opin Cell Biol ; 86: 102317, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38171142

RESUMO

Vimentin, a type III intermediate filament, reorganizes into what is termed the 'vimentin cage' in response to various pathogenic infections. This cage-like structure provides an envelope to key components of the pathogen's life cycle. In viral infections, the vimentin cage primarily serves as a scaffold and organizer for the replication factory, promoting viral replication. However, it also occasionally contributes to antiviral functions. For bacterial infections, the cage mainly supports bacterial proliferation in most observed cases. These consistent structural alterations in vimentin, induced by a range of viruses and bacteria, highlight the vimentin cage's crucial role. Pathogen-specific factors add complexity to this interaction. In this review, we provide a thorough overview of the functions and mechanisms of the vimentin cage and speculate on vimentin's potential as a novel target for anti-pathogen strategies.


Assuntos
Filamentos Intermediários , Viroses , Humanos , Vimentina/química
5.
Nat Commun ; 14(1): 8440, 2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-38114531

RESUMO

Autophagy receptor NDP52 triggers bacterial autophagy against infection. However, the ability of NDP52 to protect against viral infection has not been established. We show that NDP52 binds to envelope proteins of hepatitis B virus (HBV) and triggers a degradation process that promotes HBV clearance. Inactivating NDP52 in hepatocytes results in decreased targeting of viral envelopes in the lysosome and increased levels of viral replication. NDP52 inhibits HBV at both viral entry and late replication stages. In contrast to NDP52-mediated bacterial autophagy, lysosomal degradation of HBV envelopes is independent of galectin 8 and ATG5. NDP52 forms complex with Rab9 and viral envelope proteins and links HBV to Rab9-dependent lysosomal degradation pathway. These findings reveal that NDP52 acts as a sensor for HBV infection, which mediates a unique antiviral response to eliminate the virus. This work also suggests direct roles for autophagy receptors in other lysosomal degradation pathways than canonical autophagy.


Assuntos
Vírus da Hepatite B , Hepatite B , Humanos , Vírus da Hepatite B/fisiologia , Hepatócitos/metabolismo , Autofagia/fisiologia , Lisossomos/metabolismo , Antivirais/farmacologia , Antivirais/uso terapêutico , Antivirais/metabolismo , Replicação Viral/fisiologia
6.
Light Sci Appl ; 12(1): 298, 2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-38097537

RESUMO

In fluorescence microscopy, computational algorithms have been developed to suppress noise, enhance contrast, and even enable super-resolution (SR). However, the local quality of the images may vary on multiple scales, and these differences can lead to misconceptions. Current mapping methods fail to finely estimate the local quality, challenging to associate the SR scale content. Here, we develop a rolling Fourier ring correlation (rFRC) method to evaluate the reconstruction uncertainties down to SR scale. To visually pinpoint regions with low reliability, a filtered rFRC is combined with a modified resolution-scaled error map (RSM), offering a comprehensive and concise map for further examination. We demonstrate their performances on various SR imaging modalities, and the resulting quantitative maps enable better SR images integrated from different reconstructions. Overall, we expect that our framework can become a routinely used tool for biologists in assessing their image datasets in general and inspire further advances in the rapidly developing field of computational imaging.

7.
Subcell Biochem ; 106: 333-364, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38159233

RESUMO

The cytoskeleton, which includes actin filaments, microtubules, and intermediate filaments, is one of the most important networks in the cell and undertakes many fundamental life activities. Among them, actin filaments are mainly responsible for maintaining cell shape and mediating cell movement, microtubules are in charge of coordinating all cargo transport within the cell, and intermediate filaments are mainly thought to guard against external mechanical pressure. In addition to this, cytoskeleton networks are also found to play an essential role in multiple viral infections. Due to the COVID-19 epidemic, including SARS-CoV-2, SARS-CoV and MERS-CoV, so many variants have caused wide public concern, that any virus infection can potentially bring great harm to human beings and society. Therefore, it is of great importance to study coronavirus infection and develop antiviral drugs and vaccines. In this chapter, we summarize in detail how the cytoskeleton responds and participates in coronavirus infection by analyzing the possibility of the cytoskeleton and its related proteins as antiviral targets, thereby providing ideas for finding more effective treatments.


Assuntos
Infecções por Coronavirus , Coronavirus , Humanos , Citoesqueleto , Microtúbulos/metabolismo , Infecções por Coronavirus/metabolismo , Filamentos Intermediários , Citoesqueleto de Actina
8.
Sci Bull (Beijing) ; 68(19): 2210-2224, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37661543

RESUMO

Although severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) entry mechanism has been explored, little is known about how SARS-CoV-2 regulates the subcellular structural remodeling to invade multiple organs and cell types. Here, we unveil how SARS-CoV-2 boosts and utilizes filopodia to enter the target cells by real-time imaging. Using SARS-CoV-2 single virus-like particle (VLP) tracking in live cells and sparse deconvolution algorithm, we uncover that VLPs utilize filopodia to reach the entry site in two patterns, "surfing" and "grabbing", which avoid the virus from randomly searching on the plasma membrane. Moreover, combining mechanical simulation, we elucidate that the formation of virus-induced filopodia and the retraction speed of filopodia depend on cytoskeleton dynamics and friction resistance at the substrate surface caused by loading-virus gravity, respectively. Further, we discover that the entry process of SARS-CoV-2 via filopodia depends on Cdc42 activity and actin-associated proteins fascin, formin, and Arp2/3. Together, our results highlight that the spatial-temporal regulation of actin cytoskeleton by SARS-CoV-2 infection makes filopodia as a highway for virus entry and potentiates it as an antiviral target.

9.
J Med Virol ; 95(8): e29041, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37621182

RESUMO

The emerging outbreak of monkeypox is closely associated with the viral infection and spreading, threatening global public health. Virus-induced cell migration facilitates viral transmission. However, the mechanism underlying this type of cell migration remains unclear. Here we investigate the motility of cells infected by vaccinia virus (VACV), a close relative of monkeypox, through combining multi-omics analyses and high-resolution live-cell imaging. We find that, upon VACV infection, the epithelial cells undergo epithelial-mesenchymal transition-like transformation, during which they lose intercellular junctions and acquire the migratory capacity to promote viral spreading. After transformation, VACV-hijacked RhoA signaling significantly alters cellular morphology and rearranges the actin cytoskeleton involving the depolymerization of robust actin stress fibers, leading-edge protrusion formation, and the rear-edge recontraction, which coordinates VACV-induced cell migration. Our study reveals how poxviruses alter the epithelial phenotype and regulate RhoA signaling to induce fast migration, providing a unique perspective to understand the pathogenesis of poxviruses.


Assuntos
Mpox , Vaccinia virus , Humanos , Movimento Celular , Surtos de Doenças , Células Epiteliais
10.
J Cell Sci ; 136(17)2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37622381

RESUMO

Emerging pathogen infections, such as Zika virus (ZIKV), pose an increasing threat to human health, but the role of mechanobiological attributes of host cells during ZIKV infection is largely unknown. Here, we reveal that ZIKV infection leads to increased contractility of host cells. Importantly, we investigated whether host cell contractility contributes to ZIKV infection efficacy, from both the intracellular and extracellular perspective. By performing drug perturbation and gene editing experiments, we confirmed that disruption of contractile actomyosin compromises ZIKV infection efficiency, viral genome replication and viral particle production. By culturing on compliant matrix, we further demonstrate that a softer substrate, leading to less contractility of host cells, compromises ZIKV infection, which resembles the effects of disrupting intracellular actomyosin organization. Together, our work provides evidence to support a positive correlation between host cell contractility and ZIKV infection efficacy, thus unveiling an unprecedented layer of interplay between ZIKV and the host cell.


Assuntos
Infecção por Zika virus , Zika virus , Humanos , Actomiosina , Citoesqueleto de Actina , Biofísica
11.
J Infect Dev Ctries ; 17(6): 868-873, 2023 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-37406074

RESUMO

INTRODUCTION: Influenza is a severe respiratory viral infection that causes significant morbidity and mortality, due to annual epidemics and unpredictable pandemics. With the extensive use of neuraminidase inhibitor (NAI) drugs, the influenza B virus has carried different drug-resistant mutations. Thus, this study aimed to analyze the prevalence of drug-resistant mutations of the influenza B virus. METHODOLOGY: Near full-length sequences of the neuraminidase (NA) region of all influenza B viruses from January 1, 2006, to December 31, 2018, were downloaded from public databases GISAID and NCBI. Multiple sequence alignments were performed using Clustal Omega 1.2.4 software. Subsequently, phylogenetic trees were constructed by FastTree 2.1.11 and clustered by ClusterPickergui_1.2.3.JAR. Then, the major drug resistance sites and surrounding auxiliary sites were analyzed by Mega-X and Weblogo tools. RESULTS: Among the amino acid sequences of NA from 2006 to 2018, only Clust04 in 2018 carried a D197N mutation of the NA active site, while other drug resistance sites were conserved without mutation. According to the Weblogo analysis, a large number of N198, S295, K373, and K375 mutations were found in the amino acid residues at the auxiliary sites surrounding D197, N294, and R374. CONCLUSIONS: We found the D197N mutation in Clust04 of the 2018 influenza B virus, with a large number of N198, S295, K373, and K375 mutations in the helper sites around N197, N294, and R374 from 2006 to 2018. NA inhibitors are currently the only kind of specific antiviral agent for the influenza B virus, although these mutations cause mild NAIs resistance.


Assuntos
Epidemias , Influenza Humana , Humanos , Antivirais/farmacologia , Antivirais/uso terapêutico , Farmacorresistência Viral/genética , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/uso terapêutico , Vírus da Influenza B/genética , Vírus da Influenza B/metabolismo , Influenza Humana/tratamento farmacológico , Influenza Humana/epidemiologia , Neuraminidase/genética , Neuraminidase/química , Neuraminidase/metabolismo , Filogenia
12.
Virology ; 586: 91-104, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37506590

RESUMO

Hepatitis C virus (HCV) infection causes severe liver diseases and remains a major global public health concern. Current direct-acting antiviral (DAA)-based therapies that target viral proteins involving HCV genome replication are effective, however a minority of patients still fail to cure HCV, rendering a window to develop additional antivirals particularly targeting host functions involving in HCV infection. Here, we utilized the HCV infection cell culture system (HCVcc) to screen in-house compounds bearing host-interacting preferred scaffold for the antiviral activity. Compound HXL-10, a novel fused bicyclic derivative of pyrrolidine and imidazolidinone, was identified as a potent anti-HCV agent with a low cytotoxicity and high specificity. Mechanistic studies showed that HXL-10 neither displayed a virucidal effect nor inhibited HCV genomic RNA replication. Instead, HXL-10 might inhibit HCV assembly by targeting host functions. In summary, we developed a novel anti-HCV agent that may potentially offer additive benefits to the current anti-HCV DDA.


Assuntos
Hepatite C Crônica , Hepatite C , Humanos , Antivirais/farmacologia , Antivirais/uso terapêutico , Hepacivirus/genética , Replicação Viral , Pirrolidinas/farmacologia
13.
Nano Lett ; 23(14): 6727-6735, 2023 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-37459599

RESUMO

Cell migration occurs in confined microenvironments, which plays a vital role in the process of tumor metastasis. However, it is challenging to study their behaviors in vivo. Here we developed a cell squeeze system that can be scaled down to micrometers to mimic native physical confined microenvironments, wherein degrees of surface adhesion and mechanical constraints could be manipulated in order to investigate cell-migrating behaviors. Based on the microscale cell squeeze system, we found the synergistic role of lamin A/C and vimentin in cell transition and migration under strong confinement. The dynamic variations in lamin A/C and vimentin expression establish a positive feedback loop in response to confinement, effectively promoting amoeboid migration by modulating nuclear deformability while ensuring cell viability. This work shed light on modulating cell response to microenvironments by altering the expression of lamin A/C and/or vimentin, which may be a more efficient way of inhibiting cancer metastasis.


Assuntos
Movimento Celular , Lamina Tipo A , Núcleo Celular/metabolismo , Filamentos Intermediários , Lamina Tipo A/genética , Lamina Tipo A/metabolismo , Vimentina/metabolismo , Humanos , Células HeLa
14.
Bioessays ; 45(8): e2200225, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37254735

RESUMO

During immune responses against invading pathogenic bacteria, the cytoskeleton network enables macrophages to implement multiple essential functions. To protect the host from infection, macrophages initially polarize to adopt different phenotypes in response to distinct signals from the microenvironment. The extracellular stimulus regulates the rearrangement of the cytoskeleton, thereby altering the morphology and migratory properties of macrophages. Subsequently, macrophages degrade the extracellular matrix (ECM) and migrate toward the sites of infection to directly contact invading pathogens, during which the involvement of cytoskeleton-based structures such as podosomes and lamellipodia is indispensable. Ultimately, macrophages execute the function of phagocytosis to engulf and eliminate the invading pathogens. Phagocytosis is a complex process that requires the cooperation of cytoskeleton-enriched super-structures, such as filopodia, lamellipodia, and phagocytic cup. This review presents an overview of cytoskeletal regulations in macrophage polarization, ECM degradation, migration, and phagocytosis, highlighting the pivotal role of the cytoskeleton in host defense against infection.


Assuntos
Citoesqueleto , Macrófagos , Macrófagos/metabolismo , Citoesqueleto/metabolismo , Fagocitose/fisiologia , Membrana Celular , Microtúbulos
15.
EMBO J ; 42(13): e112542, 2023 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-37218505

RESUMO

Lipid droplets (LDs) form inter-organelle contacts with the endoplasmic reticulum (ER) that promote their biogenesis, while LD contacts with mitochondria enhance ß-oxidation of contained fatty acids. Viruses have been shown to take advantage of lipid droplets to promote viral production, but it remains unclear whether they also modulate the interactions between LDs and other organelles. Here, we showed that coronavirus ORF6 protein targets LDs and is localized to the mitochondria-LD and ER-LD contact sites, where it regulates LD biogenesis and lipolysis. At the molecular level, we find that ORF6 inserts into the LD lipid monolayer via its two amphipathic helices. ORF6 further interacts with ER membrane proteins BAP31 and USE1 to mediate ER-LDs contact formation. Additionally, ORF6 interacts with the SAM complex in the mitochondrial outer membrane to link mitochondria to LDs. In doing so, ORF6 promotes cellular lipolysis and LD biogenesis to reprogram host cell lipid flux and facilitate viral production.


Assuntos
Coronavirus , Coronavirus/metabolismo , Retículo Endoplasmático/metabolismo , Gotículas Lipídicas/metabolismo , Lipólise , Ácidos Graxos/metabolismo
16.
J Cell Sci ; 136(1)2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36594661

RESUMO

Bacterial infection is a major threat to human health, with infections resulting in considerable mortality, urging the need for a more profound understanding of bacteria-host interactions. During infection of cells, host cytoskeletal networks constantly interact with bacteria and are integral to their uptake. Vimentin, an intermediate filament protein, is one such cytoskeletal component that interacts with bacteria during infection. Although vimentin is predominantly present in the cytoplasm, it also appears in a secreted form or at the surface of multiple cell types, including epithelial cells, endothelial cells, macrophages and fibroblasts. As a cytoplasmic protein, vimentin participates in bacterial transportation and the consequential immune-inflammatory responses. When expressed on the cell surface, vimentin can be both pro- and anti-bacterial, favoring bacterial invasion in some contexts, but also limiting bacterial survival in others. Vimentin is also secreted and located extracellularly, where it is primarily involved in bacterial-induced inflammation regulation. Reciprocally, bacteria can also manipulate the fate of vimentin in host cells. Given that vimentin is not only involved in bacterial infection, but also the associated life-threatening inflammation, the use of vimentin-targeted drugs might offer a synergistic advantage. In this Review, we recapitulate the abundant evidence on vimentin and its dynamic changes in bacterial infection and speculate on its potential as an anti-bacterial therapeutic target.


Assuntos
Infecções Bacterianas , Filamentos Intermediários , Humanos , Filamentos Intermediários/metabolismo , Vimentina/metabolismo , Células Endoteliais/metabolismo , Inflamação
17.
Nat Commun ; 14(1): 478, 2023 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-36717589

RESUMO

A variety of intracellular bacteria modulate the host cytoskeleton to establish subcellular niches for replication. However, the role of intermediate filaments, which are crucial for mechanical strength and resilience of the cell, and in bacterial vacuole preservation remains unclear. Here, we show that Salmonella effector SopB reorganizes the vimentin network to form cage-like structures that surround Salmonella-containing vacuoles (SCVs). Genetic removal of vimentin markedly disrupts SCV organization, significantly reduces bacterial replication and cell death. Mechanistically, SopB uses its N-terminal Cdc42-binding domain to interact with and activate Cdc42 GTPase, which in turn recruits vimentin around SCVs. A high-content imaging-based screening identified that MEK1/2 inhibition led to vimentin dispersion. Our work therefore elucidates the signaling axis SopB-Cdc42-MEK1/2 as mobilizing host vimentin to maintain concrete SCVs and identifies a mechanism contributing to Salmonella replication. Importantly, Trametinib, a clinically-approved MEK1/2 inhibitor identified in the screen, displayed significant anti-infection efficacy against Salmonella both in vitro and in vivo, and may provide a therapeutic option for treating drug-tolerant salmonellosis.


Assuntos
Salmonella typhimurium , Vacúolos , Humanos , Proteínas de Bactérias/metabolismo , Citoesqueleto/metabolismo , Filamentos Intermediários/metabolismo , Salmonella typhimurium/genética , Vacúolos/metabolismo , Vimentina/metabolismo , Animais
19.
Front Cell Dev Biol ; 10: 862237, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35399505

RESUMO

Vimentin has been implicated in wound healing, inflammation, and cancer, but its functional contribution to intestinal diseases is poorly understood. To study how vimentin is involved during tissue injury and repair of simple epithelium, we induced colonic epithelial cell damage in the vimentin null (Vim-/-) mouse model. Vim-/- mice challenged with dextran sodium sulfate (DSS) had worse colitis manifestations than wild-type (WT) mice. Vim-/- colons also produced more reactive oxygen and nitrogen species, possibly contributing to the pathogenesis of gut inflammation and tumorigenesis than in WT mice. We subsequently describe that CD11b+ macrophages served as the mainly cellular source of reactive oxygen species (ROS) production via vimentin-ROS-pSTAT3-interleukin-6 inflammatory pathways. Further, we demonstrated that Vim-/- mice did not develop colitis-associated cancer model upon DSS treatment spontaneously but increased tumor numbers and size in the distal colon in the azoxymethane/DSS model comparing with WT mice. Thus, vimentin has a crucial role in protection from colitis induction and tumorigenesis of the colon.

20.
J Cell Biol ; 221(4)2022 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-35179563

RESUMO

Migrasomes are recently discovered vesicle-like structures on retraction fibers of migrating cells that have been linked with transfer of cellular contents, shedding of unwanted materials, and information integration. However, whether and how the cell migration paradigm regulates migrasome formation is not clear. Here, we report that there are significantly fewer migrasomes in turning cells compared with straight persistently migrating cells. The major insight underlying this observation is that as the cells elongate, their rear ends become narrower, subsequently resulting in fewer retraction fibers during impersistent migration. In addition to migration persistence, we reveal that migration speed positively corelates with migrasome formation, owing to the derived length of retraction fibers. Substantiating our hypothesis, genetically removing vimentin compromises cell migration speed and persistence and leads to fewer migrasomes. Together, our data explicate the critical roles of two cell migration patterns, persistence and speed, in the control of migrasome formation by regulating retraction fibers.


Assuntos
Movimento Celular , Organelas/metabolismo , Animais , Linhagem Celular , Proteínas de Fluorescência Verde/metabolismo , Humanos , Camundongos , Ratos , Imagem com Lapso de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA