Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Reprod Toxicol ; 128: 108659, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38972361

RESUMO

Oridonin, a natural terpenoid isolated from the leaves of Isodon rubescens (Hemsley) H.Hara, is widely used in oriental medicine for its anticancer properties across various cancer types. Despite its prevalent use, the toxic effects of oridonin on male reproduction, particularly its impact on sperm functions and the mechanisms involved, are not well understood. This study aimed to explore the effects and underlying mechanisms of oridonin on sperm functions. We initially treated Duroc boar spermatozoa with varying concentrations of oridonin (0, 5, 50, 75, 100, and 150 µM) and incubated them to induce capacitation. We then assessed cell viability and several sperm functions, including sperm motility and motion kinematics, capacitation status, and ATP levels. We also analyzed the expression levels of proteins associated with the phosphatidylinositol 3-kinase (PI3K)/phosphoinositide-dependent kinase-1 (PDK1)/protein kinase B (AKT) signaling pathway and phosphotyrosine proteins. Our results indicate that oridonin adversely affects most sperm functions in a dose-dependent manner. We observed significant decreases in AKT, p-AKT (Thr308), phosphatase and tensin homolog (PTEN), p-PDK1, and p-PI3K levels following oridonin treatment, alongside an abnormal increase in phosphotyrosine proteins. These findings suggest that oridonin may disrupt normal levels of tyrosine-phosphorylated proteins by inhibiting the PI3K/PDK1/AKT signaling pathway, which is crucial for cell proliferation, metabolism, and apoptosis, thus potentially harming sperm functions. Consequently, we recommend considering the reproductive toxicity of oridonin when using it as a therapeutic agent.


Assuntos
Diterpenos do Tipo Caurano , Transdução de Sinais , Motilidade dos Espermatozoides , Espermatozoides , Animais , Masculino , Trifosfato de Adenosina/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Diterpenos do Tipo Caurano/efeitos adversos , Fosfatidilinositol 3-Quinase/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Piruvato Desidrogenase Quinase de Transferência de Acetil , Transdução de Sinais/efeitos dos fármacos , Capacitação Espermática/efeitos dos fármacos , Motilidade dos Espermatozoides/efeitos dos fármacos , Espermatozoides/efeitos dos fármacos , Suínos
2.
Reprod Toxicol ; 129: 108678, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39068997

RESUMO

Ethylene oxide (E.O) is an epoxide compound, and it has been utilized as a sterilizer or production of ether compounds in several industries. Although the toxic effects of E.O on bacteria and mammals have been reported, its effects on male reproductive toxicity during sperm capacitation are not fully understood. Therefore, this study was designed to evaluate the effects of E.O exposure during sperm capacitation. Boar spermatozoa were treated with various E.O concentrations (0, 0.1, 1, 10, and 100 µÐœ). After exposure, sperm motility, motion kinematics, capacitation status, intracellular ATP levels, cell viability, expression levels of protein kinase A (PKA) activation, and tyrosine phosphorylation were evaluated. Results revealed that E.O exposure significantly decreased sperm motility, motion kinematics, and intracellular ATP levels but significantly increased the capacitated spermatozoa. In addition, the PKA activation and tyrosine phosphorylation were abnormally changed. According to our results, E.O may cause toxic effects on sperm function during capacitation, which induces male reproductive toxicity. Consequently, we suggest that male reproductive toxicity should be considered when using E.O.


Assuntos
Trifosfato de Adenosina , Proteínas Quinases Dependentes de AMP Cíclico , Capacitação Espermática , Motilidade dos Espermatozoides , Espermatozoides , Masculino , Animais , Capacitação Espermática/efeitos dos fármacos , Motilidade dos Espermatozoides/efeitos dos fármacos , Espermatozoides/efeitos dos fármacos , Espermatozoides/fisiologia , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Suínos , Fosforilação , Trifosfato de Adenosina/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Tirosina/metabolismo
3.
Int J Mol Sci ; 25(13)2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-39000054

RESUMO

Pesticides serve as essential tools in agriculture and public health, aiding in pest control and disease management. However, their widespread use has prompted concerns regarding their adverse effects on humans and animals. This review offers a comprehensive examination of the toxicity profile of pesticides, focusing on their detrimental impacts on the nervous, hepatic, cardiac, and pulmonary systems, and their impact on reproductive functions. Additionally, it discusses how pesticides mimic hormones, thereby inducing dysfunction in the endocrine system. Pesticides disrupt the endocrine system, leading to neurological impairments, hepatocellular abnormalities, cardiac dysfunction, and respiratory issues. Furthermore, they also exert adverse effects on reproductive organs, disrupting hormone levels and causing reproductive dysfunction. Mechanistically, pesticides interfere with neurotransmitter function, enzyme activity, and hormone regulation. This review highlights the effects of pesticides on male reproduction, particularly sperm capacitation, the process wherein ejaculated sperm undergo physiological changes within the female reproductive tract, acquiring the ability to fertilize an oocyte. Pesticides have been reported to inhibit the morphological changes crucial for sperm capacitation, resulting in poor sperm capacitation and eventual male infertility. Understanding the toxic effects of pesticides is crucial for mitigating their impact on human and animal health, and in guiding future research endeavors.


Assuntos
Disruptores Endócrinos , Fertilidade , Praguicidas , Humanos , Praguicidas/toxicidade , Praguicidas/efeitos adversos , Masculino , Disruptores Endócrinos/toxicidade , Disruptores Endócrinos/efeitos adversos , Animais , Fertilidade/efeitos dos fármacos , Infertilidade Masculina/induzido quimicamente , Exposição Ambiental/efeitos adversos , Reprodução/efeitos dos fármacos , Capacitação Espermática/efeitos dos fármacos
4.
Bioresour Technol ; 407: 131116, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39019197

RESUMO

Methane, a potent greenhouse gas, requires sustainable mitigation strategies. Here, the microbial upcycling of methane to phytoene, a valuable colorless carotenoid with applications in the cosmeceutical industry was demonstrated. To achieve this goal, a stepwise metabolic engineering approach was employed in Methylocystis sp. MJC1, a methane-oxidizing bacterium. The incorporation of crtE and crtB genes from Deinococcus radiodurans R1 established the phytoene biosynthetic pathway. This pathway was fine-tuned through promoter optimization, resulting in a phytoene production of 450 µg/L from 37 mmol/L methane. Disrupting the ackA gene reduced a by-product, acetate, by 50 % and increased phytoene production by 56 %. Furthermore, overexpressing the dxs gene boosted phytoene titer 3-fold. The optimized strain produced 15 mg/L phytoene from 2 mol/L methane in fed-batch fermentation, a 4-fold increase in phytoene titer and 4-fold in yield. This demonstrates Methylocystis sp. MJC1's potential for efficient phytoene production and presents a novel approach for greenhouse gas reduction.


Assuntos
Engenharia Metabólica , Metano , Methylocystaceae , Metano/metabolismo , Engenharia Metabólica/métodos , Methylocystaceae/metabolismo , Methylocystaceae/genética , Carotenoides/metabolismo , Fermentação , Deinococcus/metabolismo , Deinococcus/genética , Regiões Promotoras Genéticas
5.
Toxicol In Vitro ; 99: 105848, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38772495

RESUMO

Nirmatrelvir (NMV) is a recently developed selective inhibitor of the main protease of Sars-Cov-2 that reduces the severity of infection. Despite its widespread use and various side effects, NMV's effect on male fertility is still unclear. This study was thus established to investigate how NMV affects male fertility. For experiments, Duroc spermatozoa were incubated with various concentrations of NMV (0, 0.1, 1, 10, 50, and 100 µM). Then, sperm motility, motion kinematics, capacitation status, intracellular ATP level, and cell viability were evaluated. In addition, the expression levels of phospho-PKA substrates, tyrosine-phosphorylated proteins, and PI3K/PDK1/AKT signaling pathway-related proteins were measured by western blotting. Our results showed that sperm motility, motion kinematics, proportion of capacitated spermatozoa, and intracellular ATP level were significantly decreased by NMV in a dose-dependent manner. Moreover, PKA activation was significantly suppressed by NMV, and expression levels of PI3K, phospho-PDK1, AKT, and phospho-AKT (Thr308 and Ser473) were significantly increased in a dose-dependent manner. Combining these findings, it is suggested that NMV has detrimental effects on sperm function by inducing abnormal changes in the PI3K/PDK1/AKT signaling pathway, resulting in PKA deactivation. Therefore, there is a need to pay particular attention to its male reproductive toxicity when NMV is administered.


Assuntos
Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Transdução de Sinais , Motilidade dos Espermatozoides , Espermatozoides , Masculino , Proteínas Proto-Oncogênicas c-akt/metabolismo , Espermatozoides/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Motilidade dos Espermatozoides/efeitos dos fármacos , Animais , Fosfatidilinositol 3-Quinases/metabolismo , Piruvato Desidrogenase Quinase de Transferência de Acetil , Suínos , Trifosfato de Adenosina/metabolismo , Capacitação Espermática/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos
7.
Reprod Toxicol ; 125: 108559, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38378073

RESUMO

Avobenzone (AVO), an ultraviolet (UV) filter, is frequently used as an ingredient in personal cosmetics. This UV filter has been found to be easily exposed in swimming pools and beaches, and it has been detected in human urine and blood. Moreover, numerous studies have demonstrated that AVO exhibits endocrine-disrupting properties. Nevertheless, the effects of AVO on male fertility have not yet fully understood. Therefore, this study aimed to assess the effects of AVO on various sperm functions during capacitation. First, boar spermatozoa were treated with various AVO concentrations. After treatment, sperm motility and kinetic characteristics, capacitation status, intracellular adenosine triphosphate (ATP) levels, and sperm viability were evaluated. Moreover, Western blot analysis w.as conducted to evaluate protein kinase A (PKA) activity and tyrosine phosphorylation. As a result, AVO treatment significantly decreased total motility, progressive motility, and several kinetic characteristics at high concentrations (50 and 100 µM). Furthermore, the capacitation status dose-dependently decreased. Conversely, no significant differences in acrosome reaction, cell viability, and intracellular ATP levels were observed. However, the intracellular ATP level tended to decrease. In addition, AVO dose-dependently induced abnormal changes in PKA activity and tyrosine phosphorylation. Although AVO did not directly exert a toxic effect on cell viability, it ultimately negatively affected sperm functions through abnormal alterations in PKA activity and tyrosine phosphorylation. Thus, the potential implications on male fertility must be considered when contemplating the safe utilization of AVO.


Assuntos
Propiofenonas , Sêmen , Motilidade dos Espermatozoides , Masculino , Suínos , Animais , Humanos , Fosforilação , Sêmen/metabolismo , Espermatozoides , Tirosina/metabolismo , Trifosfato de Adenosina/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Capacitação Espermática
8.
Toxics ; 12(1)2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38251029

RESUMO

Ritonavir (RTV) is an antiviral and a component of COVID-19 treatments. Moreover, RTV demonstrates anti-cancer effects by suppressing AKT. However, RTV has cytotoxicity and suppresses sperm functions by altering AKT activity. Although abnormal AKT activity is known for causing detrimental effects on sperm functions, how RTV alters AKT signaling in spermatozoa remains unknown. Therefore, this study aimed to investigate reproductive toxicity of RTV in spermatozoa through phosphoinositide 3-kinase/phosphoinositide-dependent protein kinase-1/protein kinase B (PI3K/PDK1/AKT) signaling. Duroc spermatozoa were treated with various concentrations of RTV, and capacitation was induced. Sperm functions (sperm motility, motion kinematics, capacitation status, and cell viability) and expression levels of tyrosine-phosphorylated proteins and PI3K/PDK1/AKT pathway-related proteins were evaluated. In the results, RTV significantly suppressed sperm motility, motion kinematics, capacitation, acrosome reactions, and cell viability. Additionally, RTV significantly increased levels of phospho-tyrosine proteins and PI3K/PDK1/AKT pathway-related proteins except for AKT and PI3K. The expression level of AKT was not significantly altered and that of PI3K was significantly decreased. These results suggest RTV may suppress sperm functions by induced alterations of PI3K/PDK1/AKT pathway through abnormally increased tyrosine phosphorylation. Therefore, we suggest people who use or prescribe RTV need to consider its male reproductive toxicity.

9.
Reprod Toxicol ; 123: 108528, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38145882

RESUMO

Perfluorooctanoic acid (PFOA) is a perfluorinated compound, a synthesized chemical, and has been used in several industrial products for more than 70 years. Although PFOA is known to exert toxic effects in normal cells, there is no detailed information on its reproductive toxicity and its effects on sperm functions related to protein kinase B (AKT). Therefore, this study was conducted to explore the effects of PFOA on sperm functions via AKT. Boar spermatozoa were incubated with different concentrations of PFOA (0, 0.1, 1, 10, and 100 µM) to induce capacitation. Sperm functions (sperm motility, motion kinematic parameters, capacitation status, cell viability, and intracellular ATP levels) were evaluated. In addition, the expression levels of AKT, phospho-AKT, phospho-PKA, and tyrosine phosphorylated proteins were evaluated by western blotting. Results showed significant decreases in sperm motility and motion kinematic parameters. PFOA treatment significant suppressed spermatozoa capacitation and intracellular ATP levels. Furthermore, it significantly decreased the levels of phospho-PKA and tyrosine phosphorylated proteins. The levels of AKT phosphorylation at Thr308 and Ser473 also significantly decreased. These findings suggest that PFOA diminishes sperm functions during capacitation and induces unnatural phosphorylation in AKT, leading to reproductive toxicity. Therefore, people should be aware of reproductive toxicity when using PFOA.


Assuntos
Caprilatos , Fluorocarbonos , Proteínas Proto-Oncogênicas c-akt , Sêmen , Animais , Masculino , Trifosfato de Adenosina/metabolismo , Fosforilação , Proteínas Proto-Oncogênicas c-akt/metabolismo , Sêmen/metabolismo , Capacitação Espermática , Motilidade dos Espermatozoides , Espermatozoides , Suínos , Tirosina/metabolismo
10.
Reprod Toxicol ; 120: 108426, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37353039

RESUMO

Deguelin is a natural flavonoid extracted from plants belonging to the Lonchocarpus, Derris, or Tephrosia genera. It inhibits AKT activity in tumors and has the potential to be used as a treatment for malignant tumors. However, the risks associated with the use of deguelin on male fertility have not yet been explained in detail. Therefore, this study was conducted to investigate the effects of deguelin on sperm functions during capacitation. First, boar spermatozoa were exposed to different concentrations of deguelin (0.1, 1, 10, 50, and 100 µM). Next, sperm functional assessments, such as sperm motility, capacitation status, intracellular ATP level, and cell viability, were performed. The expression levels of PI3K/AKT-related proteins and the phosphorylation of their tyrosine residues were also evaluated by western blotting. No significant difference was observed in cell viability; however, deguelin considerably decreased sperm motility and motion kinematics in a dose-dependent manner. Although no significant difference was observed in the capacitation status, acrosome reaction decreased at high concentrations of deguelin (50 and 100 µM). Furthermore, intracellular ATP levels were significantly decreased in all deguelin treatment groups compared with those in the control group. Results of western blotting revealed that deguelin substantially diminished tyrosine phosphorylation. Interestingly, in contrast to previous studies showing that deguelin inhibits AKT activity, our results showed that it increased the expression of PI3K/AKT pathway-related proteins. Collectively, these findings indicate that deguelin exerts negative effects on sperm functions due to abnormal PI3K/AKT signaling activation. We believe that this is the first study to provide evidence that deguelin can regulate sperm functions independent of PI3K/AKT pathway inhibition. Furthermore, its detrimental effects on male fertility should be considered while developing or using deguelin as a therapeutic agent.


Assuntos
Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Masculino , Animais , Suínos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Flavonoides/toxicidade , Sêmen/metabolismo , Motilidade dos Espermatozoides , Espermatozoides , Fosforilação , Tirosina/metabolismo , Sus scrofa/metabolismo , Trifosfato de Adenosina/metabolismo , Capacitação Espermática
11.
Bioresour Technol ; 346: 126605, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34953994

RESUMO

Gas fermentation utilizes syngas converted from biomass or waste as feedstock. A bubble column reactor for pressurizing was designed to increase the mass transfer rate between gas and liquid, and reduce energy consumption by medium agitation. Thermococcus onnurineus, a hydrogenic CO-oxidizer, was cultured initially under ambient pressure with the initial inlet gas composition; 60% CO and 40% N2. The maximum H2 productivity was 363 mmol/l/h, without pH adjustment. When additional pressure was applied, the pH rapidly declined; this may be attributed to the increased CO2 solubility under pressure. By controlling pH, H2 productivity increased up to 450 mmol/l/h; which is comparable to the previously reported H2 productivity in a continuous stirred tank reactor. The results may suggest energy saving potentials of bubble column reactors in gas fermentation. This finding may be applied to other gas fermentation processes, as syngas itself contains CO2 and many microbial processes also release CO2.


Assuntos
Reatores Biológicos , Monóxido de Carbono , Fermentação , Hidrogênio , Concentração de Íons de Hidrogênio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA