Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Polymers (Basel) ; 13(11)2021 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-34204033

RESUMO

This paper studies the influence of displacement rate on mode II delamination of unidirectional carbon/epoxy composites. End-notched flexure test is performed at displacement rates of 1, 10, 100 and 500 mm/min. Experimental results reveal that the mode II fracture toughness GIIC increases with the displacement, with a maximum increment of 45% at 100 mm/min. In addition, scanning electron micrographs depict that fiber/matrix interface debonding is the major damage mechanism at 1 mm/min. At higher speeds, significant matrix-dominated shear cusps are observed contributing to higher GIIC. Besides, it is demonstrated that the proposed rate-dependent model is able to fit the experimental data from the current study and the open literature generally well. The mode II fracture toughness measured from the experiment or deduced from the proposed model can be used in the cohesive element model to predict failure. Good agreement is found between the experimental and numerical results, with a maximum difference of 10%. The numerical analyses indicate crack jump occurs suddenly after the peak load is attained, which leads to the unstable crack propagation seen in the experiment.

2.
Polymers (Basel) ; 13(3)2021 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-33573112

RESUMO

Moisture absorption tests for materials that exhibit non-Fickian behavior generally require a relatively long period to reach saturation. Therefore, it would be beneficial to establish a relationship between the moisture content and the thickness to minimize the experimental time and cost. This research characterizes the moisture absorption behavior of AS4/8552 carbon/epoxy composites. Specimens were prepared at 4, 8, and 16 plies and immersed in distilled water at 60 °C. The relationship between the non-Fickian parameters (Fickian to non-Fickian maximum moisture content ratio ϕ, non-Fickian diffusivity per square thickness α, and non-Fickian initiation time to) and thickness was characterized using a thickness-dependent model. A comparison with other materials revealed that all three non-Fickian parameters are able to be fitted using a power law. Nevertheless, the upper boundary for the applicability of this model was not determined in this study. The Weibull distribution plots indicate that the probability of non-Fickian moisture absorption is influenced by ϕ and α at approximately 62% within a normalized thickness range of 2-3. In regards to to, it is 82% at a normalized thickness of 6. Therefore, the Weibull distribution is proposed for the assessment of non-Fickian moisture absorption based on the material's thickness.

3.
Polymers (Basel) ; 12(9)2020 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-32971855

RESUMO

It is necessary to consider the influence of moisture damage on the interlaminar fracture toughness for composite structures that are used for outdoor applications. However, the studies on the progressive variation of the fracture toughness as a function of moisture content M (%) is rather limited. In this regard, this study focuses on the characterization of mode II delamination of carbon/epoxy composites conditioned at 70 °C/85% relative humidity (RH). End-notched flexure test is conducted for specimens aged at various moisture absorption levels. Experimental results reveal that mode II fracture toughness degrades with the moisture content, with a maximum of 23% decrement. A residual property model is used to predict the variation of the fracture toughness with the moisture content. Through numerical simulations, it is found that the approaches used to estimate the lamina and cohesive properties are suitable to obtain reliable simulation results. In addition, the damage initiation is noticed during the early loading stage; however, the complete damage is only observed when the numerical peak load is achieved. Results from the present research could serve as guidelines to predict the residual properties and simulate the mode II delamination behavior under moisture attack.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA