Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 16(2): 383-95, 2014 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-24002354

RESUMO

The development of sensors capable of detecting particles and radiation with both high time and high positional resolution is key to improving our understanding in many areas of science. Example applications of such sensors range from fundamental scattering studies of chemical reaction mechanisms through to imaging mass spectrometry of surfaces, neutron scattering studies aimed at probing the structure of materials, and time-resolved fluorescence measurements to elucidate the structure and function of biomolecules. In addition to improved throughput resulting from parallelisation of data collection - imaging of multiple different fragments in velocity-map imaging studies, for example - fast image sensors also offer a number of fundamentally new capabilities in areas such as coincidence detection. In this Perspective, we review recent developments in fast image sensor technology, provide examples of their implementation in a range of different experimental contexts, and discuss potential future developments and applications.

2.
J Chem Phys ; 139(8): 084202, 2013 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-24006988

RESUMO

A new technique for studying surface photochemistry has been developed using an ion imaging time-of-flight mass spectrometer in conjunction with a fast camera capable of multimass imaging. This technique, called pixel imaging mass spectrometry (PImMS), has been applied to the study of butanone photooxidation on TiO2(110). In agreement with previous studies of this system, it was observed that the main photooxidation pathway for butanone involves ejection of an ethyl radical into vacuum which, as confirmed by our imaging experiment, undergoes fragmentation after ionization in the mass spectrometer. This proof-of-principle experiment illustrates the usefulness and applicability of PImMS technology to problems of interest within the surface science community.

3.
J Phys Chem A ; 116(45): 10897-903, 2012 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-23102270

RESUMO

We present the first multimass velocity-map imaging data acquired using a new ultrafast camera designed for time-resolved particle imaging. The PImMS (Pixel Imaging Mass Spectrometry) sensor allows particle events to be imaged with time resolution as high as 25 ns over data acquisition times of more than 100 µs. In photofragment imaging studies, this allows velocity-map images to be acquired for multiple fragment masses on each time-of-flight cycle. We describe the sensor architecture and present bench-testing data and multimass velocity-map images for photofragments formed in the UV photolysis of two test molecules: Br(2) and N,N-dimethylformamide.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA