RESUMO
Nanoparticle-based magnetic contrast agents have opened the potential for magnetic resonance imaging (MRI) to be used for early non-invasive diagnosis of Alzheimer's disease (AD). Accumulation of amyloid pathology in the brain has shown association with cognitive decline and tauopathy; hence, it is an effective biomarker for the early detection of AD. The aim of this study was to develop a biocompatible magnetic nanoparticle targeted to amyloid beta (Aß) plaques to increase the sensitivity of T2-weighted MRI for imaging of amyloid pathology in AD. We presented novel iron core-iron oxide nanoparticles stabilized with a dimercaptosuccinic acid coating and functionalized with an anti-Aß antibody. Nanoparticle biocompatibility and cellular internalization were evaluated in vitro in U-251 glioblastoma cells using cellular assays, proteomics, and transmission electron microscopy. Iron nanoparticles demonstrated no significant in vitro cytotoxicity, and electron microscopy results showed their movement through the endocytic cycle within the cell over a 24 h period. In addition, immunostaining and bio-layer interferometry confirmed the targeted nanoparticle's binding affinity to amyloid species. The iron nanoparticles demonstrated favourable MRI contrast enhancement; however, the addition of the antibody resulted in a reduction in the relaxivity of the particles. The present work shows promising preliminary results in the development of a targeted non-invasive method of early AD diagnosis using contrast-enhanced MRI.
RESUMO
Oocytes can be supplemented with extra copies of mitochondrial DNA (mtDNA) to enhance developmental outcome. Pigs generated through supplementation with mtDNA derived from either sister (autologous) or third-party (heterologous) oocytes have been shown to exhibit only minor differences in growth, physiological and biochemical assessments, and health and well-being do not appear affected. However, it remains to be determined whether changes in gene expression identified during preimplantation development persisted and affected the gene expression of adult tissues indicative of high mtDNA copy number. It is also unknown if autologous and heterologous mtDNA supplementation resulted in different patterns of gene expression. Our transcriptome analyses revealed that genes involved in immune response and glyoxylate metabolism were commonly affected in brain, heart and liver tissues by mtDNA supplementation. The source of mtDNA influenced the expression of genes associated with oxidative phosphorylation (OXPHOS), suggesting a link between the use of third-party mtDNA and OXPHOS. We observed a significant difference in parental allele-specific imprinted gene expression in mtDNA-supplemented-derived pigs, with shifts to biallelic expression with no effect on expression levels. Overall, mtDNA supplementation influences the expression of genes in important biological processes in adult tissues. Consequently, it is important to determine the effect of these changes on animal development and health.
Assuntos
Variações do Número de Cópias de DNA , DNA Mitocondrial , Animais , Suínos , DNA Mitocondrial/metabolismo , Oócitos/metabolismo , Mitocôndrias/metabolismo , Sus scrofa/metabolismoRESUMO
Mitochondrial DNA (mtDNA) deficiency correlates with poor oocyte quality and fertilisation failure. However, the supplementation of mtDNA deficient oocytes with extra copies of mtDNA improves fertilisation rates and embryo development. The molecular mechanisms associated with oocyte developmental incompetence, and the effects of mtDNA supplementation on embryo development are largely unknown. We investigated the association between the developmental competence of Sus scrofa oocytes, assessed with Brilliant Cresyl Blue, and transcriptome profiles. We also analysed the effects of mtDNA supplementation on the developmental transition from the oocyte to the blastocyst by longitudinal transcriptome analysis. mtDNA deficient oocytes revealed downregulation of genes associated with RNA metabolism and oxidative phosphorylation, including 56 small nucleolar RNA genes and 13 mtDNA protein coding genes. We also identified the downregulation of a large subset of genes for meiotic and mitotic cell cycle process, suggesting that developmental competence affects the completion of meiosis II and first embryonic cell division. The supplementation of oocytes with mtDNA in combination with fertilisation improves the maintenance of the expression of several key developmental genes and the patterns of parental allele-specific imprinting gene expression in blastocysts. These results suggest associations between mtDNA deficiency and meiotic cell cycle and the developmental effects of mtDNA supplementation on Sus scrofa blastocysts.
Assuntos
DNA Mitocondrial , Transcriptoma , Animais , Suínos , DNA Mitocondrial/genética , Oócitos/metabolismo , Desenvolvimento Embrionário , Blastocisto/metabolismo , Meiose , Suplementos Nutricionais , Sus scrofa/metabolismoRESUMO
Although immunotherapy has revolutionized oncotherapy, only ≈15% of head and neck squamous cell carcinoma (HNSCC) patients benefit from the current therapies. An immunosuppressive tumor microenvironment (TME) and dysregulation of the polycomb ring finger oncogene BMI1 are potential reasons for the failure. Herein, to promote immunotherapeutic efficacy against HNSCC, an injectable nanocomposite hydrogel is developed with a polymer framework (PLGA-PEG-PLGA) that is loaded with both imiquimod encapsulated CaCO3 nanoparticles (RC) and cancer cell membrane (CCM)-coated mesoporous silica nanoparticles containing a peptide-based proteolysis-targeting chimeras (PROTAC) for BMI1 and paclitaxel (PepM@PacC). Upon injection, this nanocomposite hydrogel undergoes in situ gelation, after which it degrades in the TME over time, releasing RC and PepM@PacC nanoparticles to respectively perform immunotherapy and chemotherapy. Specifically, the RC particles selectively manipulate tumor-associated macrophages and dendritic cells to activate a T-cell immune response, while CCM-mediated homologous targeting and endocytosis delivers the PepM@PacC particles into cancer cells, where endogenous glutathione promotes disulfide bond cleavage to release the PROTAC peptide for BMI1 degradation and frees the paclitaxel from the particle pores to elicit apoptosis meanwhile enhance immunotherapy. Thus, the nanocomposite hydrogel, which is designed to exploit multiple known vulnerabilities of HNSCC, succeeds in suppressing both growth and metastasis of HNSCC.
Assuntos
Neoplasias de Cabeça e Pescoço , Imunoterapia , Humanos , Carcinoma de Células Escamosas de Cabeça e Pescoço/terapia , Nanogéis , Proteólise , Neoplasias de Cabeça e Pescoço/tratamento farmacológico , Paclitaxel/farmacologia , Paclitaxel/uso terapêutico , Microambiente TumoralRESUMO
Introducing extra mitochondrial DNA (mtDNA) into oocytes at fertilization can rescue poor quality oocytes. However, supplementation alters DNA methylation and gene expression profiles of preimplantation embryos. To determine if these alterations impacted offspring, we introduced mtDNA from failed-to-mature sister (autologous) or third party (heterologous) oocytes into mature oocytes and transferred zygotes into surrogates. Founders exhibited significantly greater daily weight gain (heterologous) and growth rates (heterologous and autologous) to controls. In weaners, cholesterol, bilirubin (heterologous and autologous), anion gap, and lymphocyte count (autologous) were elevated. In mature pigs, potassium (heterologous) and bicarbonate (autologous) were altered. mtDNA and imprinted gene analyses did not reveal aberrant profiles. Neither group exhibited gross anatomical, morphological, or histopathological differences that would lead to clinically significant lesions. Female founders were fertile and their offspring exhibited modified weight and height gain, biochemical, and hematological profiles. mtDNA supplementation induced minor differences that did not affect health and well-being.
RESUMO
The mitochondrial genome resides in the mitochondria present in nearly all cell types. The porcine (Sus scrofa) mitochondrial genome is circa 16.7 kb in size and exists in the multimeric format in cells. Individual cell types have different numbers of mitochondrial DNA (mtDNA) copy number based on their requirements for ATP produced by oxidative phosphorylation. The oocyte has the largest number of mtDNA of any cell type. During oogenesis, the oocyte sets mtDNA copy number in order that sufficient copies are available to support subsequent developmental events. It also initiates a program of epigenetic patterning that regulates, for example, DNA methylation levels of the nuclear genome. Once fertilized, the nuclear and mitochondrial genomes establish synchrony to ensure that the embryo and fetus can complete each developmental milestone. However, altering the oocyte's mtDNA copy number by mitochondrial supplementation can affect the programming and gene expression profiles of the developing embryo and, in oocytes deficient of mtDNA, it appears to have a positive impact on the embryo development rates and gene expression profiles. Furthermore, mtDNA haplotypes, which define common maternal origins, appear to affect developmental outcomes and certain reproductive traits. Nevertheless, the manipulation of the mitochondrial content of an oocyte might have a developmental advantage.
Assuntos
DNA Mitocondrial , Oócitos , DNA Mitocondrial/genética , Oócitos/metabolismo , Mitocôndrias/genética , Mitocôndrias/metabolismo , Oogênese/genética , Desenvolvimento Embrionário/genéticaRESUMO
Prenatal heart disease, generally known as cardiac problems (CHDs), is a group of ailments that damage the heartbeat and has recently now become top deaths worldwide. It connects a plethora of cardiovascular diseases risks to the urgent in need of accurate, trustworthy, and effective approaches for early recognition. Data preprocessing is a common method for evaluating big quantities of information in the medical business. To help clinicians forecast heart problems, investigators utilize a range of data mining algorithms to examine enormous volumes of intricate medical information. The system is predicated on classification models such as NB, KNN, DT, and RF algorithms, so it includes a variety of cardiac disease-related variables. It takes do with an entire dataset from the medical research database of patients with heart disease. The set has 300 instances and 75 attributes. Considering their relevance in establishing the usefulness of alternate approaches, only 15 of the 75 criteria are examined. The purpose of this research is to predict whether or not a person will develop cardiovascular disease. According to the statistics, naïve Bayes classifier has the highest overall accuracy.
Assuntos
Mineração de Dados , Cardiopatias , Algoritmos , Teorema de Bayes , Mineração de Dados/métodos , Cardiopatias/diagnóstico por imagem , Humanos , Processamento de Imagem Assistida por ComputadorRESUMO
BACKGROUND: Mitochondrial DNA (mtDNA) copy number in oocytes correlates with oocyte quality and fertilisation outcome. The introduction of additional copies of mtDNA through mitochondrial supplementation of mtDNA-deficient Sus scrofa oocytes resulted in: (1) improved rates of fertilisation; (2) increased mtDNA copy number in the 2-cell stage embryo; and (3) improved development of the embryo to the blastocyst stage. Furthermore, a subset of genes showed changes in gene expression. However, it is still unknown if mitochondrial supplementation alters global and local DNA methylation patterns during early development. RESULTS: We generated a series of embryos in a model animal, Sus scrofa, by intracytoplasmic sperm injection (ICSI) and mitochondrial supplementation in combination with ICSI (mICSI). The DNA methylation status of ICSI- and mICSI-derived blastocysts was analysed by whole genome bisulfite sequencing. At a global level, the additional copies of mtDNA did not affect nuclear DNA methylation profiles of blastocysts, though over 2000 local genomic regions exhibited differential levels of DNA methylation. In terms of the imprinted genes, DNA methylation patterns were conserved in putative imprint control regions; and the gene expression profile of these genes and genes involved in embryonic genome activation were not affected by mitochondrial supplementation. However, 52 genes showed significant differences in expression as demonstrated by RNAseq analysis. The affected gene networks involved haematological system development and function, tissue morphology and cell cycle. Furthermore, seven mtDNA-encoded t-RNAs were downregulated in mICSI-derived blastocysts suggesting that extra copies of mtDNA affected tRNA processing and/or turnover, hence protein synthesis in blastocysts. We also showed a potential association between differentially methylated regions and changes in expression for 55 genes due to mitochondrial supplementation. CONCLUSIONS: The addition of just an extra ~ 800 copies of mtDNA into oocytes can have a significant impact on both gene expression and DNA methylation profiles in Sus scrofa blastocysts by altering the epigenetic programming established during oogenesis. Some of these changes may affect specific tissue-types later in life. Consequently, it is important to determine the longitudinal effect of these molecular changes on growth and development before considering human clinical practice.
Assuntos
Metilação de DNA , Transcriptoma , Animais , Blastocisto , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , Suplementos Nutricionais , Desenvolvimento Embrionário , Metáfase , Oócitos/metabolismo , Sus scrofa/genética , Sus scrofa/metabolismo , SuínosRESUMO
Mitochondrial DNA (mtDNA) methylation in vertebrates has been hotly debated for over 40 years. Most contrasting results have been reported following bisulfite sequencing (BS-seq) analyses. We addressed whether BS-seq experimental and analysis conditions influenced the estimation of the levels of methylation in specific mtDNA sequences. We found false positive non-CpG methylation in the CHH context (fpCHH) using unmethylated Sus scrofa mtDNA BS-seq data. fpCHH methylation was detected on the top/plus strand of mtDNA within low guanine content regions. These top/plus strand sequences of fpCHH regions would become extremely AT-rich sequences after BS-conversion, whilst bottom/minus strand sequences remained almost unchanged. These unique sequences caused BS-seq aligners to falsely assign the origin of each strand in fpCHH regions, resulting in false methylation calls. fpCHH methylation detection was enhanced by short sequence reads, short library inserts, skewed top/bottom read ratios and non-directional read mapping modes. We confirmed no detectable CHH methylation in fpCHH regions by BS-amplicon sequencing. The fpCHH peaks were located in the D-loop, ATP6, ND2, ND4L, ND5 and ND6 regions and identified in our S. scrofa ovary and oocyte data and human BS-seq data sets. We conclude that non-CpG methylation could potentially be overestimated in specific sequence regions by BS-seq analysis.
RESUMO
Mitochondrial dysfunction in tissue-specific mesenchymal stem cells (MSCs) plays a critical role in cell fate and the morbidity of chronic inflammation-associated bone diseases, such as periodontitis and osteoarthritis. However, there is still no effective method to cure chronic inflammation-associated bone diseases by physiologically restoring the function of mitochondria and MSCs. Herein, it is first found that chronic inflammation leads to excess Ca2+ transfer from the endoplasmic reticulum to mitochondria, which causes mitochondrial calcium overload and further damage to mitochondria. Furthermore, damaged mitochondria continuously accumulate in MSCs due to the inhibition of mitophagy by activating the Wnt/ß-catenin pathway under chronic inflammatory conditions, impairing the differentiation of MSCs. Based on the mechanistic discovery, intracellular microenvironment (esterase and low pH)-responsive nanoparticles are fabricated to capture Ca2+ around mitochondria in MSCs to regulate MSC mitochondrial calcium flux against mitochondrial dysfunction. Furthermore, the same nanoparticles are able to deliver siRNA to MSCs to inhibit the Wnt/ß-catenin pathway and regulate mitophagy of the originally dysfunctional mitochondria. These precision-engineered nanoparticles, referred to as "nanorepairers," physiologically restore the function of mitochondria and MSCs, resulting in effective therapy for periodontitis and osteoarthritis. The concept can potentially be expanded to the treatment of other diseases via mitochondrial quality control intervention.
Assuntos
Inflamação/metabolismo , Células-Tronco Mesenquimais/metabolismo , Mitocôndrias/metabolismo , Nanopartículas/metabolismo , Animais , Medula Óssea/metabolismo , Diferenciação Celular , China , Modelos Animais de Doenças , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Osteoartrite do Joelho/metabolismo , Periodontite/metabolismo , Ratos , Ratos Sprague-Dawley , Dente/metabolismo , Adulto JovemRESUMO
In the last decades, HOX proteins have been extensively studied due to their pivotal role in transcriptional events. HOX proteins execute their activity by exploiting a cooperative binding to PBX proteins and DNA. Therefore, an increase or decrease in HOX activity has been associated with both solid and haematological cancer diseases. Thus, inhibiting HOX-PBX interaction represents a potential strategy to prevent these malignancies, as demonstrated by the patented peptide HTL001 that is being studied in clinical trials. In this work, a computational study is described to identify novel potential peptides designed by employing a database of non-natural amino acids. For this purpose, residue scanning of the HOX minimal active sequence was performed to select the mutations to be further processed. According to these results, the peptides were point-mutated and used for Molecular Dynamics (MD) simulations in complex with PBX1 protein and DNA to evaluate complex binding stability. MM-GBSA calculations of the resulting MD trajectories were exploited to guide the selection of the most promising mutations that were exploited to generate twelve combinatorial peptides. Finally, the latter peptides in complex with PBX1 protein and DNA were exploited to run MD simulations and the ΔGbinding average values of the complexes were calculated. Thus, the analysis of the results highlighted eleven combinatorial peptides that will be considered for further assays.
Assuntos
Antineoplásicos/química , Simulação por Computador , Desenho de Fármacos , Neoplasias/tratamento farmacológico , Peptídeos/química , Fator de Transcrição 1 de Leucemia de Células Pré-B/antagonistas & inibidores , Humanos , Neoplasias/metabolismo , Fator de Transcrição 1 de Leucemia de Células Pré-B/química , Fator de Transcrição 1 de Leucemia de Células Pré-B/metabolismoRESUMO
The therapeutic goal for autoimmune diseases is disease antigen-specific immune tolerance without nonspecific immune suppression. However, it is a challenge to induce antigen-specific immune tolerance in a dysregulated immune system. In this study, we developed immune-homeostatic microparticles (IHMs) that treat multiple mouse models of autoimmunity via induction of apoptosis in activated T cells and reestablishment of regulatory T cells. Specifically, in an experimental model of colitis, IHMs rapidly released monocyte chemotactic protein-1 after intravenous administration, which recruited activated T cells and then induced their apoptosis by conjugated Fas ligand on the IHM surface. This triggered professional macrophages to ingest apoptotic T cells and produce high quantities of transforming growth factor-ß, which drove regulatory T cell differentiation. Furthermore, the modular design of IHMs allowed IHMs to be engineered with the autoantigen peptides that can reduce disease in an experimental autoimmune encephalomyelitis mouse model and a nonobese diabetic mouse model. This was accomplished by sustained release of the autoantigens after induction of T cell apoptosis and transforming growth factor-ß production by macrophages, which promoted to establish an immune tolerant environment. Thus, IHMs may be an efficient therapeutic strategy for autoimmune diseases through induction of apoptosis and reestablishment of tolerant immune responses.
Assuntos
Encefalomielite Autoimune Experimental , Tolerância Imunológica , Animais , Autoantígenos , Autoimunidade , Camundongos , Linfócitos T ReguladoresRESUMO
FRET has been massively used to see if biomolecules were bounded or not by labelling both biomolecules by one dye of a FRET pair. This should give a digital answer to the question (fluorescence of the acceptor: high FRET efficency: molecules associated, fluorescence of the donor: low FRET efficency: molecules dissociated). This has been used, inter alia, at the single-molecule scale in containers, such as liposomes. One perspective of the field is to reduce the container's size to study the effect of confinement on binding. The problem is that if the two dyes are encapsulated inside a small liposome, they could have a significant probability to be close one from the other one (and thus to undergo a high FRET efficiency event without binding). This is why we suggest here a theoretical model which gives mean FRET efficiency as a function of liposome radius (the model applies to any spherical container) and Förster radius to help the experimentalist to choose their experimental set-up. Besides, the influence of side effect on mean FRET efficiency has been studied as well. We show here that if this "background FRET" is most of the time non-quantitative, it can remain significant and which makes data analysis trickier. We could show as well that if this background FRET obviously increases when liposome radius decreases, this variation was lower than the one which could be expected because of side effect. We show as well the FRET efficiency function distribution which let the experimentalist know the probability to get one FRET efficiency value.
RESUMO
Our understanding of the interactions between the nuclear and mitochondrial genomes is becoming increasingly important as they are extensively involved in establishing early development and developmental progression. Evidence from various biological systems indicates the interdependency between the genomes, which requires a high degree of compatibility and synchrony to ensure effective cellular function throughout development and in the resultant offspring. During development, waves of DNA demethylation, de novo methylation, and maintenance methylation act on the nuclear genome and typify oogenesis and pre- and postimplantation development. At the same time, significant changes in mitochondrial DNA copy number influence the metabolic status of the developing organism in a typically cell-type-specific manner. Collectively, at any given stage in development, these actions establish genomic balance that ensures each developmental milestone is met and that the organism's program for life is established.
Assuntos
Núcleo Celular/genética , Epigênese Genética , Genoma Mitocondrial/genética , Animais , Metilação de DNA , Desenvolvimento Embrionário/genéticaRESUMO
Polycystic Ovary Syndrome (PCOS) is a multifactorial syndrome with reproductive, endocrine, and metabolic symptoms, affecting about 10% women of reproductive age. Pathogenesis of the syndrome is poorly understood with genetic and fetal origins being the focus of the conundrum. Genetic predisposition of PCOS has been confirmed by candidate gene studies and Genome-Wide Association Studies (GWAS). Recently, the expression of PCOS candidate genes across gestation has been studied in human and bovine fetal ovaries. The current study sought to identify potential upstream regulators and mechanisms associated with PCOS candidate genes. Using RNA sequencing data of bovine fetal ovaries (62-276 days, n = 19), expression of PCOS candidate genes across gestation was analysed using Partek Flow. A supervised heatmap of the expression data of all 24,889 genes across gestation was generated. Most of the PCOS genes fell into one of four clusters according to their expression patterns. Some genes correlated negatively (early genes; C8H9orf3, TOX3, FBN3, GATA4, HMGA2, and DENND1A) and others positively (late genes; FDFT1, LHCGR, AMH, FSHR, ZBTB16, and PLGRKT) with gestational age. Pathways associated with PCOS candidate genes and genes co-expressed with them were determined using Ingenuity pathway analysis (IPA) software as well as DAVID Bioinformatics Resources for KEGG pathway analysis and Gene Ontology databases. Genes expressed in the early cluster were mainly involved in mitochondrial function and oxidative phosphorylation and their upstream regulators included PTEN, ESRRG/A and MYC. Genes in the late cluster were involved in stromal expansion, cholesterol biosynthesis and steroidogenesis and their upstream regulators included TGFB1/2/3, TNF, ERBB2/3, VEGF, INSIG1, POR, and IL25. These findings provide insight into ovarian development of relevance to the origins of PCOS, and suggest that multiple aetiological pathways might exist for the development of PCOS.
RESUMO
Mitochondria have a multitude of functions, including energy generation and cell signaling. Recent evidence suggests that mitochondrial dynamics (i.e. the balance between mitochondrial fission and fusion) also regulate immune functions. Here, we reveal that lipopolysaccharide (LPS) stimulation increases mitochondrial numbers in mouse bone marrow-derived macrophages (BMMs) and human monocyte-derived macrophages. In BMMs, this response requires Toll-like receptor 4 (Tlr4) and the TLR adaptor protein myeloid differentiation primary response 88 (MyD88) but is independent of mitochondrial biogenesis. Consistent with this phenomenon being a consequence of mitochondrial fission, the dynamin-related protein 1 (Drp1) GTPase that promotes mitochondrial fission is enriched on mitochondria in LPS-activated macrophages and is required for the LPS-mediated increase in mitochondrial numbers in both BMMs and mouse embryonic fibroblasts. Pharmacological agents that skew toward mitochondrial fusion also abrogated this response. LPS triggered acute Drp1 phosphorylation at serine 635 (S635), followed by sustained Drp1 dephosphorylation at serine 656 (S656), in BMMs. LPS-induced S656 dephosphorylation was abrogated in MyD88-deficient BMMs, suggesting that this post-translational modification is particularly important for Tlr4-inducible fission. Pharmacological or genetic targeting of Tlr4-inducible fission had selective effects on inflammatory mediator production, with LPS-inducible mitochondrial fission promoting the expression and/or secretion of a subset of inflammatory mediators in BMMs and mouse embryonic fibroblasts. Thus, triggering of Tlr4 results in MyD88-dependent activation of Drp1, leading to inducible mitochondrial fission and subsequent inflammatory responses in macrophages.
Assuntos
Dinaminas/metabolismo , Lipopolissacarídeos , Macrófagos/imunologia , Dinâmica Mitocondrial , Animais , Células Cultivadas , Fibroblastos , Humanos , Camundongos , Proteínas Mitocondriais , Fator 88 de Diferenciação Mieloide , Receptor 4 Toll-LikeRESUMO
BACKGROUND: Physician rating websites are commonly used by the public, yet the relationship between web-based physician ratings and health care quality is not well understood. OBJECTIVE: The objective of our study was to use physician disciplinary convictions as an extreme marker for poor physician quality and to investigate whether disciplined physicians have lower ratings than nondisciplined matched controls. METHODS: This was a retrospective national observational study of all disciplined physicians in Canada (751 physicians, 2000 to 2013). We searched ratings (2005-2015) from the country's leading online physician rating website for this group, and for 751 matched controls according to gender, specialty, practice years, and location. We compared overall ratings (out of a score of 5) as well as mean ratings by the type of misconduct. We also compared ratings for each type of misconduct and punishment. RESULTS: There were 62.7% (471/751) of convicted and disciplined physicians (cases) with web-based ratings and 64.6% (485/751) of nondisciplined physicians (controls) with ratings. Of 312 matched case-control pairs, disciplined physicians were rated lower than controls overall (3.62 vs 4.00; P<.001). Disciplined physicians had lower ratings for all types of misconduct and punishment-except for physicians disciplined for sexual offenses (n=90 pairs; 3.83 vs 3.86; P=.81). Sexual misconduct was the only category in which mean ratings for physicians were higher than those for other disciplined physicians (3.63 vs 3.35; P=.003). CONCLUSIONS: Physicians convicted for disciplinary misconduct generally had lower web-based ratings. Physicians convicted of sexual misconduct did not have lower ratings and were rated higher than other disciplined physicians. These findings may have future implications for the identification of physicians providing poor-quality care.
Assuntos
Médicos/legislação & jurisprudência , Má Conduta Profissional/estatística & dados numéricos , Estudos de Casos e Controles , Feminino , Humanos , Internet , Masculino , Satisfação do Paciente , Estudos RetrospectivosRESUMO
Single molecule measurements are revolutionizing the understanding of the stochastics of behavior of single molecules. There is a common theme referred to as a near-field approach, in how many single molecule measurements are being performed in assays. The term near field is used because the measurement volume is typically very small such that a single molecule, or a single molecule binding pair, within that volume is of an appreciable concentration. The next development in detection will be performing many single molecule measurements at one time such that single molecule measurements can be used as the basis for quantitative analysis. There have already been some notable developments in this direction. Again, all have a common theme in that nanoparticles are used to create many near-field volumes that can be measured simultaneously. Herein, the coupled developments in nanoparticles and measurement strategies that allow nanoparticles to be the backbone of the next generation of sensing technologies are discussed.
RESUMO
It is becoming increasingly apparent that cells require cooperation between the nuclear and mitochondrial genomes to promote effective function. However, it was long thought that the mitochondrial genome was under the strict control of the nuclear genome and the mitochondrial genome had little influence on cell fate unless it was extensively mutated, as in the case of the mitochondrial DNA diseases. However, as our understanding of the roles that epigenetic regulators, including DNA methylation, and metabolism play in cell fate and function, the role of the mitochondrial genome appears to have a greater influence than previously thought. In this review, I draw on examples from tumorigenesis, stem cells, and oocyte pre- and post-fertilisation events to discuss how modulating one genome affects the other and that this results in a compromise to produce functional mature cells. I propose that, during development, both of the genomes interact with each other through intermediaries to establish genomic balance and that establishing genomic balance is a key facet in determining cell fate and viability.