Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Commun Biol ; 5(1): 946, 2022 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-36088386

RESUMO

Most metabolic studies on mice are performed at room temperature, although under these conditions mice, unlike humans, spend considerable energy to maintain core temperature. Here, we characterize the impact of housing temperature on energy expenditure (EE), energy homeostasis and plasma concentrations of appetite- and glucoregulatory hormones in normal-weight and diet-induced obese (DIO) C57BL/6J mice fed chow or 45% high-fat-diet, respectively. Mice were housed for 33 days at 22, 25, 27.5, and 30 °C in an indirect-calorimetry-system. We show that energy expenditure increases linearly from 30 °C towards 22 °C and is ~30% higher at 22 °C in both mouse models. In normal-weight mice, food intake counter-balances EE. In contrast, DIO mice do not reduce food intake when EE is lowered. By end of study, mice at 30 °C, therefore, had higher body weight, fat mass and plasma glycerol and triglycerides than mice at 22 °C. Dysregulated counterbalancing in DIO mice may result from increased pleasure-based eating.


Assuntos
Ingestão de Energia , Habitação , Animais , Peso Corporal , Dieta Hiperlipídica/efeitos adversos , Metabolismo Energético , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Obesos , Obesidade/etiologia , Obesidade/metabolismo , Temperatura
2.
Int J Mol Sci ; 23(6)2022 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-35328681

RESUMO

Restoring the control of food intake is the key to obesity management and prevention. The arcuate nucleus (ARC) of the hypothalamus is extensively being studied as a potential anti-obesity target. Animal studies showed that neuropeptide FF (NPFF) reduces food intake by its action in neuropeptide Y (NPY) neurons of the hypothalamic ARC, but the detailed mode of action observed in human neurons is missing, due to the lack of a human-neuron-based model for pharmacology testing. Here, we validated and utilized a human-neural-stem-cell-based (hNSC) model of ARC to test the effects of NPFF on cellular pathways and neuronal activity. We found that in the human neurons, decreased cAMP levels by NPFF resulted in a reduced rate of cytoplasmic calcium oscillations, indicating an inhibition of ARC NPY neurons. This suggests the therapeutic potential of NPFFR2 in obesity. In addition, we demonstrate the use of human-stem-cell-derived neurons in pharmacological applications and the potential of this model to address functional aspects of human hypothalamic neurons.


Assuntos
Neuropeptídeo Y , Oligopeptídeos , Animais , Núcleo Arqueado do Hipotálamo/metabolismo , Humanos , Neurônios/metabolismo , Neuropeptídeo Y/metabolismo , Neuropeptídeo Y/farmacologia , Obesidade/metabolismo , Oligopeptídeos/farmacologia
3.
Obesity (Silver Spring) ; 30(4): 841-857, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35333444

RESUMO

New appetite-regulating antiobesity treatments such as semaglutide and agents under investigation such as tirzepatide show promise in achieving weight loss of 15% or more. Energy expenditure, fat oxidation, and lean mass preservation are important determinants of weight loss and weight-loss maintenance beyond appetite regulation. This review discusses prior failures in clinical development of weight-loss drugs targeting energy expenditure and explores novel strategies for targeting energy expenditure: mitochondrial proton leak, uncoupling, dynamics, and biogenesis; futile calcium and substrate cycling; leptin for weight maintenance; increased sympathetic nervous system activity; and browning of white fat. Relevant targets for preserving lean mass are also reviewed: growth hormone, activin type II receptor inhibition, and urocortin 2 and 3. We endorse moderate modulation of energy expenditure and preservation of lean mass in combination with efficient appetite reduction as a means of obtaining a significant, safe, and long-lasting weight loss. Furthermore, we suggest that the regulatory guidelines should be revisited to focus more on the quality of weight loss and its maintenance rather than the absolute weight loss. Commitment to this research focus both from a scientific and from a regulatory point of view could signal the beginning of the next era in obesity therapies.


Assuntos
Regulação do Apetite , Redução de Peso , Apetite , Metabolismo Energético/fisiologia , Humanos , Obesidade/tratamento farmacológico , Redução de Peso/fisiologia
4.
Endocr Connect ; 9(8): 755-768, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32688339

RESUMO

The prevalence of non-alcoholic fatty liver disease (NAFLD) has increased dramatically worldwide and, subsequently, also the risk of developing non-alcoholic steatohepatitis (NASH), hepatic fibrosis, cirrhosis and cancer. Today, weight loss is the only available treatment, but administration of fibroblast growth factor 21 (FGF21) analogues have, in addition to weight loss, shown improvements on liver metabolic health but the mechanisms behind are not entirely clear. The aim of this study was to investigate the hepatic metabolic profile in response to FGF21 treatment. Diet-induced obese (DIO) mice were treated with s.c. administration of FGF21 or subjected to caloric restriction by switching from high fat diet (HFD) to chow to induce 20% weight loss and changes were compared to vehicle dosed DIO mice. Cumulative caloric intake was reduced by chow, while no differences were observed between FGF21 and vehicle dosed mice. The body weight loss in both treatment groups was associated with reduced body fat mass and hepatic triglycerides (TG), while hepatic cholesterol was slightly decreased by chow. Liver glycogen was decreased by FGF21 and increased by chow. The hepatic gene expression profiles suggest that FGF21 increased uptake of fatty acids and lipoproteins, channeled TGs toward the production of cholesterol and bile acid, reduced lipogenesis and increased hepatic glucose output. Furthermore, FGF21 appeared to reduce inflammation and regulate hepatic leptin receptor-a expression. In conclusion, FGF21 affected several metabolic pathways to reduce hepatic steatosis and improve hepatic health and markedly more genes than diet restriction (61 vs 16 out of 89 investigated genes).

5.
Basic Clin Pharmacol Toxicol ; 127(3): 163-177, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32363722

RESUMO

The prevalence of obesity and associated comorbidities such as type 2 diabetes and cardiovascular disease is increasing globally. Body-weight loss reduces the risk of morbidity and mortality in obese individuals, and thus, pharmacotherapies that induce weight loss can be of great value in improving the health and well-being of people living with obesity. Treatment with amylin and calcitonin receptor agonists reduces food intake and induces weight loss in several animal models, and a number of companies have started clinical testing for peptide analogues in the treatment of obesity and/or type 2 diabetes. Studies predominantly performed in rodent models show that amylin and the dual amylin/calcitonin receptor agonist salmon calcitonin achieve their metabolic effects by engaging areas in the brain associated with regulating homeostatic energy balance. In particular, signalling via neuronal circuits in the caudal hindbrain and the hypothalamus is implicated in mediating effects on food intake and energy expenditure. We review the current literature investigating the interaction of amylin/calcitonin receptor agonists with neurocircuits that induce the observed metabolic effects. Moreover, the status of drug development of amylin and calcitonin receptor agonists for the treatment of metabolic diseases is summarized.


Assuntos
Agonistas dos Receptores da Amilina/farmacologia , Agonistas dos Receptores da Amilina/uso terapêutico , Doenças Metabólicas/tratamento farmacológico , Receptores da Calcitonina/agonistas , Receptores da Calcitonina/uso terapêutico , Animais , Metabolismo Energético , Humanos , Hipotálamo , Polipeptídeo Amiloide das Ilhotas Pancreáticas/fisiologia , Leptina , Camundongos , Ratos , Rombencéfalo
6.
Neuropharmacology ; 167: 107987, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-32035146

RESUMO

The amylin receptor (AMY) and calcitonin receptor (CTR) agonists induce acute suppression of food intake in rodents by binding to receptors in the area postrema (AP) and potentially by targeting arcuate (ARC) neurons directly. Salmon calcitonin (sCT) induces more potent, longer lasting anorectic effects compared to amylin. We thus aimed to investigate whether AMY/CTR agonists target key neuronal populations in the ARC, and whether differing brain distribution patterns could mediate the observed differences in efficacy with sCT and amylin treatment. Brains were examined by whole brain 3D imaging and confocal microscopy following subcutaneous administration of fluorescently labelled peptides to mice. We found that sCT, but not amylin, internalizes into a subset of ARC NPY neurons, along with an unknown subset of ARC, AP and dorsal vagal motor nucleus cells. ARC POMC neurons were not targeted. Furthermore, amylin and sCT displayed similar distribution patterns binding to receptors in the AP, the organum vasculosum of the lamina terminalis (OVLT) and the ARC. Amylin distributed within the median eminence with only specs of sCT being present in this region, however amylin was only detectable 10 minutes after injection while sCT displayed a residence time of up to 2 hours post injection. We conclude that AMY/CTR agonists bind to receptors in a subset of ARC NPY neurons and in circumventricular organs. Furthermore, the more sustained and greater anorectic efficacy of sCT compared to rat amylin is not attributable to differences in brain distribution patterns but may more likely be explained by greater potency at both the CTR and AMY.


Assuntos
Núcleo Arqueado do Hipotálamo/metabolismo , Calcitonina/metabolismo , Hormônios e Agentes Reguladores de Cálcio/metabolismo , Neurônios/metabolismo , Neuropeptídeo Y/metabolismo , Animais , Núcleo Arqueado do Hipotálamo/efeitos dos fármacos , Calcitonina/administração & dosagem , Hormônios e Agentes Reguladores de Cálcio/administração & dosagem , Linhagem Celular , Cricetinae , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neurônios/efeitos dos fármacos , Ligação Proteica/fisiologia , Ratos
7.
Nat Med ; 23(10): 1158-1166, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28846099

RESUMO

Growth differentiation factor 15 (GDF15; also known as MIC-1) is a divergent member of the TGF-ß superfamily and is associated with body-weight regulation in humans and rodents. However, the cognate receptor of GDF15 is unknown. Here we show that GDF15 binds specifically to GDNF family receptor α-like (GFRAL) with high affinity, and that GFRAL requires association with the coreceptor RET to elicit intracellular signaling in response to GDF15 stimulation. We also found that GDF15-mediated reductions in food intake and body weight of mice with obesity were abolished in GFRAL-knockout mice. We further found that GFRAL expression was limited to hindbrain neurons and not present in peripheral tissues, which suggests that GDF15-GFRAL-mediated regulation of food intake is by a central mechanism. Lastly, given that GDF15 did not increase energy expenditure in treated mice with obesity, the anti-obesity actions of the cytokine are likely driven primarily by a reduction in food intake.


Assuntos
Ingestão de Alimentos/efeitos dos fármacos , Metabolismo Energético/efeitos dos fármacos , Receptores de Fator Neurotrófico Derivado de Linhagem de Célula Glial/efeitos dos fármacos , Fator 15 de Diferenciação de Crescimento/farmacologia , Obesidade/metabolismo , Redução de Peso/efeitos dos fármacos , Animais , Ingestão de Alimentos/genética , Metabolismo Energético/genética , Citometria de Fluxo , Receptores de Fator Neurotrófico Derivado de Linhagem de Célula Glial/genética , Receptores de Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Células HEK293 , Humanos , Técnicas In Vitro , Camundongos , Camundongos Knockout , Ratos , Ratos Sprague-Dawley , Ressonância de Plasmônio de Superfície , Redução de Peso/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA