Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Immunother Cancer ; 12(4)2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38658031

RESUMO

BACKGROUND: Tigilanol tiglate (TT) is a protein kinase C (PKC)/C1 domain activator currently being developed as an intralesional agent for the treatment of various (sub)cutaneous malignancies. Previous work has shown that intratumoral (I.T.) injection of TT causes vascular disruption with concomitant tumor ablation in several preclinical models of cancer, in addition to various (sub)cutaneous tumors presenting in the veterinary clinic. TT has completed Phase I dose escalation trials, with some patients showing signs of abscopal effects. However, the exact molecular details underpinning its mechanism of action (MoA), together with its immunotherapeutic potential in oncology remain unclear. METHODS: A combination of microscopy, luciferase assays, immunofluorescence, immunoblotting, subcellular fractionation, intracellular ATP assays, phagocytosis assays and mixed lymphocyte reactions were used to probe the MoA of TT in vitro. In vivo studies with TT used MM649 xenograft, CT-26 and immune checkpoint inhibitor refractory B16-F10-OVA tumor bearing mice, the latter with or without anti-programmed cell death 1 (PD-1)/anti-cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) mAb treatment. The effect of TT at injected and non-injected tumors was also assessed. RESULTS: Here, we show that TT induces the death of endothelial and cancer cells at therapeutically relevant concentrations via a caspase/gasdermin E-dependent pyroptopic pathway. At therapeutic doses, our data demonstrate that TT acts as a lipotoxin, binding to and promoting mitochondrial/endoplasmic reticulum (ER) dysfunction (leading to unfolded protein responsemt/ER upregulation) with subsequent ATP depletion, organelle swelling, caspase activation, gasdermin E cleavage and induction of terminal necrosis. Consistent with binding to ER membranes, we found that TT treatment promoted activation of the integrated stress response together with the release/externalization of damage-associated molecular patterns (HMGB1, ATP, calreticulin) from cancer cells in vitro and in vivo, characteristics indicative of immunogenic cell death (ICD). Confirmation of ICD in vivo was obtained through vaccination and rechallenge experiments using CT-26 colon carcinoma tumor bearing mice. Furthermore, TT also reduced tumor volume, induced immune cell infiltration, as well as improved survival in B16-F10-OVA tumor bearing mice when combined with immune checkpoint blockade. CONCLUSIONS: These data demonstrate that TT is an oncolytic small molecule with multiple targets and confirms that cell death induced by this compound has the potential to augment antitumor responses to immunotherapy.


Assuntos
Inibidores de Checkpoint Imunológico , Morte Celular Imunogênica , Animais , Camundongos , Morte Celular Imunogênica/efeitos dos fármacos , Humanos , Inibidores de Checkpoint Imunológico/farmacologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Linhagem Celular Tumoral , Feminino , Ensaios Antitumorais Modelo de Xenoenxerto , Neoplasias/tratamento farmacológico , Neoplasias/imunologia , Neoplasias/terapia
2.
Sci Transl Med ; 14(662): eabn3758, 2022 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-36103515

RESUMO

The management of antibiotic-resistant, bacterial biofilm infections in chronic skin wounds is an increasing clinical challenge. Despite advances in diagnosis, many patients do not derive benefit from current anti-infective/antibiotic therapies. Here, we report a novel class of naturally occurring and semisynthetic epoxy-tiglianes, derived from the Queensland blushwood tree (Fontainea picrosperma), and demonstrate their antimicrobial activity (modifying bacterial growth and inducing biofilm disruption), with structure/activity relationships established against important human pathogens. In vitro, the lead candidate EBC-1013 stimulated protein kinase C (PKC)-dependent neutrophil reactive oxygen species (ROS) induction and NETosis and increased expression of wound healing-associated cytokines, chemokines, and antimicrobial peptides in keratinocytes and fibroblasts. In vivo, topical EBC-1013 induced rapid resolution of infection with increased matrix remodeling in acute thermal injuries in calves. In chronically infected diabetic mouse wounds, treatment induced cytokine/chemokine production, inflammatory cell recruitment, and complete healing (in six of seven wounds) with ordered keratinocyte differentiation. These results highlight a nonantibiotic approach involving contrasting, orthogonal mechanisms of action combining targeted biofilm disruption and innate immune induction in the treatment of chronic wounds.


Assuntos
Forbóis , Animais , Antibacterianos/farmacologia , Biofilmes , Bovinos , Humanos , Queratinócitos , Camundongos , Cicatrização
3.
J Nat Prod ; 85(8): 1959-1966, 2022 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-35973043

RESUMO

The kernels of the Australian blushwood tree (Fontainea picrosperma) are the source of the veterinary anticancer drug tigilanol tiglate (2a, Stelfonta) and contain a concentration of phorboids significantly higher than croton oil, the only abundant source of these compounds previously known. The oily matrix of the blushwood kernels is composed of free fatty acids and not by glycerides as found in croton oil. By active partitioning, it was therefore possible to recover and characterize for the first time a cryptic tigliane fraction, that is, the diterpenoid fraction that, because of its lipophilicity, could not be obtained by solvent partition of crude extracts. The cryptic tigliane fraction accounted for ca. 30% of the tigliane kernel titer and was quantified by 1H NMR spectroscopy and profiled by HPLC-MS. Long-chain (linoleates and/or oleates) 20-acyl derivatives of the epoxytigliane diesters tigilanol tiglate (EBC-46, 2a), EBC-47 (4a), EBC-59 (5a), EBC-83 (6a), and EBC-177 (7a) were identified. By chemoselective acylation of EBC-46 (2a) and EBC-177 (7a) the natural triesters 2b and 7b and a selection of analogues were prepared to assist identification of the natural compounds. The presence of a free C-20 hydroxy group is a critical requirement for PKC activation by phorbol esters. The unexpected activity of 20-linoleoyl triester 2b in a cytotoxicity assay based on PKC activation was found to be related mainly to its hydrolysis to tigilanol tiglate (2a) under the prolonged conditions of the assay, while other esters were inactive. Significant differences between the esterification profile of the epoxytigliane di- and triesters exist in F. picrosperma, suggesting a precise, yet elusive, blueprint of acyl decoration for the tigliane polyol 5-hydroxyepoxyphorbol.


Assuntos
Euphorbiaceae , Forbóis , Austrália , Óleo de Cróton , Árvores
4.
Sci Rep ; 11(1): 207, 2021 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-33420238

RESUMO

The long-standing perception of Protein Kinase C (PKC) as a family of oncoproteins has increasingly been challenged by evidence that some PKC isoforms may act as tumor suppressors. To explore the hypothesis that activation, rather than inhibition, of these isoforms is critical for anticancer activity, we isolated and characterized a family of 16 novel phorboids closely-related to tigilanol tiglate (EBC-46), a PKC-activating epoxytigliane showing promising clinical safety and efficacy for intratumoral treatment of cancers. While alkyl branching features of the C12-ester influenced potency, the 6,7-epoxide structural motif and position was critical to PKC activation in vitro. A subset of the 6,7-epoxytiglianes were efficacious against established tumors in mice; which generally correlated with in vitro activation of PKC. Importantly, epoxytiglianes without evidence of PKC activation showed limited antitumor efficacy. Taken together, these findings provide a strong rationale to reassess the role of PKC isoforms in cancer, and suggest in some situations their activation can be a promising strategy for anticancer drug discovery.


Assuntos
Antineoplásicos/química , Antineoplásicos/farmacologia , Diterpenos/química , Diterpenos/farmacologia , Proteína Quinase C/metabolismo , Animais , Linhagem Celular Tumoral , Ativação Enzimática/efeitos dos fármacos , Camundongos , Transdução de Sinais/efeitos dos fármacos
5.
Biochem Pharmacol ; 178: 114048, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32446889

RESUMO

Epoxy-tiglianes are a novel class of diterpene esters. The prototype epoxy-tigliane, EBC-46 (tigilanol tiglate), possesses potent anti-cancer properties and is currently in clinical development as a local treatment for human and veterinary cutaneous tumors. EBC-46 rapidly destroys treated tumors and consistently promotes wound re-epithelialization at sites of tumor destruction. However, the mechanisms underlying these keratinocyte wound healing responses are not completely understood. Here, we investigated the effects of EBC-46 and an analogue (EBC-211) at 1.51 nM-151 µM concentrations, on wound healing responses in immortalized human skin keratinocytes (HaCaTs). Both EBC-46 and EBC-211 (1.51 nM-15.1 µM) accelerated G0/G1-S and S-G2/M cell cycle transitions and HaCaT proliferation. EBC-46 (1.51-151 nM) and EBC-211 (1.51 nM-15.1 µM) further induced significant HaCaT migration and scratch wound repopulation. Stimulated migration/wound repopulation responses were even induced by EBC-46 (1.51 nM) and EBC-211 (1.51-151 nM) with proliferation inhibitor, mitomycin C (1 µM), suggesting that epoxy-tiglianes can promote migration and wound repopulation independently of proliferation. Expression profiling analyses showed that epoxy-tiglianes modulated keratin, DNA synthesis/replication, cell cycle/proliferation, motility/migration, differentiation, matrix metalloproteinase (MMP) and cytokine/chemokine gene expression, to facilitate enhanced responses. Although epoxy-tiglianes down-regulated established cytokine and chemokine agonists of keratinocyte proliferation and migration, enhanced HaCaT responses were demonstrated to be mediated via protein kinase C (PKC) phosphorylation and significantly abrogated by pan-PKC inhibitor, bisindolylmaleimide-1 (BIM-1, 1 µM). By identifying how epoxy-tiglianes stimulate keratinocyte healing responses and re-epithelialization in treated skin, our findings support the further development of this class of small molecules as potential therapeutics for other clinical situations associated with impaired re-epithelialization, such as non-healing skin wounds.


Assuntos
Compostos de Epóxi/farmacologia , Queratinócitos/efeitos dos fármacos , Forbóis/farmacologia , Proteína Quinase C , Reepitelização/efeitos dos fármacos , Cicatrização/efeitos dos fármacos , Linhagem Celular Transformada , Relação Dose-Resposta a Droga , Ativação Enzimática/efeitos dos fármacos , Ativação Enzimática/fisiologia , Compostos de Epóxi/química , Humanos , Queratinócitos/enzimologia , Forbóis/química , Proteína Quinase C/metabolismo , Reepitelização/fisiologia , Cicatrização/fisiologia
6.
PLoS One ; 9(10): e108887, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25272271

RESUMO

Intra-lesional chemotherapy for treatment of cutaneous malignancies has been used for many decades, allowing higher local drug concentrations and less toxicity than systemic agents. Here we describe a novel diterpene ester, EBC-46, and provide preclinical data supporting its use as an intra-lesional treatment. A single injection of EBC-46 caused rapid inflammation and influx of blood, followed by eschar formation and rapid tumor ablation in a range of syngeneic and xenograft models. EBC-46 induced oxidative burst from purified human polymorphonuclear cells, which was prevented by the Protein Kinase C inhibitor bisindolylmaleimide-1. EBC-46 activated a more specific subset of PKC isoforms (PKC-ßI, -ßII, -α and -γ) compared to the structurally related phorbol 12-myristate 13-acetate (PMA). Although EBC-46 showed threefold less potency for inhibiting cell growth than PMA in vitro, it was more effective for cure of tumors in vivo. No viable tumor cells were evident four hours after injection by ex vivo culture. Pharmacokinetic profiles from treated mice indicated that EBC-46 was retained preferentially within the tumor, and resulted in significantly greater local responses (erythema, oedema) following intra-lesional injection compared with injection into normal skin. The efficacy of EBC-46 was reduced by co-injection with bisindolylmaleimide-1. Loss of vascular integrity following treatment was demonstrated by an increased permeability of endothelial cell monolayers in vitro and by CD31 immunostaining of treated tumors in vivo. Our results demonstrate that a single intra-lesional injection of EBC-46 causes PKC-dependent hemorrhagic necrosis, rapid tumor cell death and ultimate cure of solid tumors in pre-clinical models of cancer.


Assuntos
Antineoplásicos/uso terapêutico , Diterpenos/uso terapêutico , Neoplasias/tratamento farmacológico , Proteína Quinase C/metabolismo , Animais , Antineoplásicos/administração & dosagem , Linhagem Celular Tumoral , Diterpenos/administração & dosagem , Xenoenxertos , Humanos , Indóis/farmacologia , Injeções Intralesionais , Maleimidas/farmacologia , Camundongos , Neoplasias/patologia , Proteína Quinase C/antagonistas & inibidores , Inibidores de Proteínas Quinases/farmacologia
7.
Chemistry ; 16(29): 8894-903, 2010 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-20572168

RESUMO

A detailed examination of [4+2] cycloaddition reactions between 1,8-disubstituted cyclooctatetraenes and diazo compounds revealed that 4-phenyl-1,2,4-triazole-3,5-dione (PTAD) reacts to form either 2,3- or 3,4-disubstituted adducts. The product distribution can be controlled by modulating the electron density of the cyclooctatetraene. Unprecedented [4+2] cycloadditions between diisopropyl azodicarboxylate (DIAD) and 1,8-disubstituted cyclooctatetraenes are also described and further manipulation of a resulting cycloadduct uncovered a new pathway to the synthetically challenging bicyclo[4.2.0]octa-2,4-diene family. Variation of the substituents resulted in a range of compounds displaying selective action against different human tumour cell types.


Assuntos
Antineoplásicos/síntese química , Compostos Azo/química , Compostos Bicíclicos com Pontes/síntese química , Diterpenos/síntese química , Micro-Ondas , Neoplasias/tratamento farmacológico , Antineoplásicos/química , Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Cromatografia Líquida de Alta Pressão , Ciclização , Humanos , Modelos Moleculares , Estrutura Molecular , Estereoisomerismo , Triazóis/química
8.
Chemistry ; 15(42): 11307-18, 2009 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-19750529

RESUMO

EBC-23, 24, 25, 72, 73, 75 and 76 were isolated from the fruit of Cinnamomum laubatii (family Lauraceae) in the Australian tropical rainforests. EBC-23 (1) was synthesized stereoselectively, in nine linear steps in 8 % overall yield, to confirm the reported relative stereochemistry and determine the absolute stereochemistry. Key to the total synthesis was a series of Tietze-Smith linchpin reactions. The novel spiroacetal structural motif, exemplified by EBC-23 (1), was found to inhibit the growth of the androgen-independent prostate tumor cell line DU145 in the mouse model, indicating potential for the treatment of refractory solid tumors in adults.


Assuntos
Acetais/química , Antineoplásicos/química , Piranos/química , Compostos de Espiro/química , Acetais/isolamento & purificação , Acetais/farmacologia , Animais , Antineoplásicos/síntese química , Antineoplásicos/farmacologia , Austrália , Linhagem Celular Tumoral , Cinnamomum/química , Frutas/química , Humanos , Camundongos , Camundongos Nus , Piranos/síntese química , Piranos/farmacologia , Compostos de Espiro/síntese química , Compostos de Espiro/farmacologia , Estereoisomerismo , Ensaios Antitumorais Modelo de Xenoenxerto
9.
J Am Chem Soc ; 130(46): 15262-3, 2008 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-18950180

RESUMO

EBC-23 (2), a prostate anticancer agent, was isolated from the fruit of Cinnamomum laubatii (family Lauraceae) in the Australian tropical rainforest. Extensive NOE experiments enabled the relative stereochemistry of the proposed EBC-23 (2) structure to be determined. Total synthesis of both enantiopodes over nine linear steps, involving challenging RCM and spiroacetal cyclizations, confirmed the gross structure and relative and absolute stereochemistry.


Assuntos
Antineoplásicos/química , Clima , Piranos/química , Chuva , Compostos de Espiro/química , Árvores , Antineoplásicos/síntese química , Austrália , Cinnamomum/química , Estrutura Molecular , Piranos/síntese química , Compostos de Espiro/síntese química , Estereoisomerismo
10.
Cancer Res ; 64(8): 2833-9, 2004 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-15087400

RESUMO

Options for skin cancer treatment currently include surgery, radiotherapy, topical chemotherapy, cryosurgery, curettage, and electrodessication. Although effective, surgery is costly and unsuitable for certain patients. Radiotherapy can leave a poor cosmetic effect, and current chemotherapy is limited by low cure rates and extended treatment schedules. Here, we describe the preclinical activity of a novel topical chemotherapeutic agent for the treatment of skin cancer, 3-ingenyl angelate (PEP005), a hydrophobic diterpene ester isolated from the plant Euphorbia peplus. Three daily topical applications of 42 nmol (18 micro g) of PEP005 cured a series of s.c. mouse tumors (B16 melanoma, LK2 UV-induced squamous cell carcinoma, and Lewis lung carcinoma; n = >14 tumors/group) and human tumors (DO4 melanoma, HeLa cervical carcinoma, and PC3 and DU145 prostate carcinoma; n = >4 tumors/group) previously established (5-10 mm(3)) on C57BL/6 or Foxn1(nu) mice. The treatment produced a mild, short-term erythema and eschar formation but, ultimately, resulted in excellent skin cosmesis. The LD(90) for PEP005 for a panel of tumor cell lines was 180-220 micro M. Electron microscopy showed that treatment with PEP005 both in vitro (230 micro M) and in vivo (42 nmol) rapidly caused swelling of mitochondria and cell death by primary necrosis. (51)Cr release, uptake of propidium iodide, and staining with the mitochondria dye JC1, revealed that PEP005 (230 micro M) treatment of tumor cells in vitro resulted in a rapid plasma membrane perturbation and loss of mitochondrial membrane potential. PEP005 thus emerges as a new topical anti-skin cancer agent that has a novel mode of action involving plasma membrane and mitochondrial disruption and primary necrosis, ultimately resulting in an excellent cosmetic outcome.


Assuntos
Antineoplásicos/farmacologia , Diterpenos/farmacologia , Ésteres/farmacologia , Mitocôndrias/efeitos dos fármacos , Administração Tópica , Animais , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Membrana Celular/efeitos dos fármacos , Feminino , Humanos , Membranas Intracelulares/efeitos dos fármacos , Membranas Intracelulares/fisiologia , Potenciais da Membrana/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Mitocôndrias/fisiologia , Neoplasias Experimentais/tratamento farmacológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA