Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Investig Med ; 71(8): 821-829, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37572030

RESUMO

Cyclic vomiting syndrome (CVS) is an underdiagnosed disorder of the gut-brain interaction. Our understanding of the pathophysiology of CVS is evolving. Here, we tested the hypotheses that: (1) the levels of endocannabinoids and related lipids are altered in CVS, and (2) cephalic-vagal stimulation drive changes in endolipid levels. Ten adult patients with CVS and eight healthy controls were included. Indirect measurements of parasympathetic (RFa) functions were performed with spectral analysis of heart rate variability and respiratory activity. Plasma levels of endocannabinoids and related lipids were measured at baseline and during a sham feeding. Values are reported as mean ± standard error of the mean and compared using t-test or ANOVA. CVS patients had a lower parasympathetic tone and response to the Valsalva maneuver and deep breathing than the controls. The baseline 2-Arachidonoylglycerol (2-AG) had a significantly higher concentration in CVS (5.9e-008 ± 3.7e-008 mol/L) than control (3.7e-008 ± 1.3e-008 mol/; p < 0.05). Sham feeding did not change the concentration of 2-AG. 2-oleoylglycerol (2-OG) was significantly higher in CVS than control and did not change with sham feeding. Levels of N-acylethanolamines, including anandamide (AEA), were not different in CVS vs control. After sham feeding, AEA showed a trend toward increasing (p = 0.08) in CVS, but not in control. With sham feeding, palmitoyl ethanolamine significantly increased in both CVS and control groups; oleoyl ethanolamine in CVS only, and stearoyl ethanolamine in the control group. Levels of endocannabinoids and related lipids are altered in CVS patients. Sham feeding affects endogenous signaling lipids in a disease and time-dependent manner.


Assuntos
Endocanabinoides , Etanolaminas , Adulto , Humanos , Endocanabinoides/análise
2.
Life Sci ; 328: 121878, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37392779

RESUMO

AIMS: Mitragynine (MG) is an alkaloid found in Mitragyna speciosa (kratom), a plant used to self-treat symptoms of opioid withdrawal and pain. Kratom products are commonly used in combination with cannabis, with the self-treatment of pain being a primary motivator of use. Both cannabinoids and kratom alkaloids have been characterized to alleviate symptoms in preclinical models of neuropathic pain such as chemotherapy-induced peripheral neuropathy (CIPN). However, the potential involvement of cannabinoid mechanisms in MG's efficacy in a rodent model of CIPN have yet to be explored. MAIN METHODS: Prevention of oxaliplatin-induced mechanical hypersensitivity and formalin-induced nociception were assessed following intraperitoneal administration of MG and CB1, CB2, or TRPV1 antagonists in wildtype and cannabinoid receptor knockout mice. The effects of oxaliplatin and MG exposure on the spinal cord endocannabinoid lipidome was assessed by HPLC-MS/MS. KEY FINDINGS: The efficacy of MG on oxaliplatin-induced mechanical hypersensitivity was partially attenuated upon genetic deletion of cannabinoid receptors, and completely blocked upon pharmacological inhibition of CB1, CB2, and TRPV1 channels. This cannabinoid involvement was found to be selective to a model of neuropathic pain, with minimal effects on MG-induced antinociception in a model of formalin-induced pain. Oxaliplatin was found to selectively disrupt the endocannabinoid lipidome in the spinal cord, which was prevented by repeated MG exposure. SIGNIFICANCE: Our findings suggest that cannabinoid mechanisms contribute to the therapeutic efficacy of the kratom alkaloid MG in a model of CIPN, which may result in increased therapeutic efficacy when co-administered with cannabinoids.


Assuntos
Antineoplásicos , Canabinoides , Mitragyna , Neuralgia , Alcaloides de Triptamina e Secologanina , Camundongos , Animais , Canabinoides/farmacologia , Endocanabinoides , Oxaliplatina , Espectrometria de Massas em Tandem , Antineoplásicos/efeitos adversos , Alcaloides de Triptamina e Secologanina/efeitos adversos , Neuralgia/induzido quimicamente , Neuralgia/tratamento farmacológico , Neuralgia/prevenção & controle , Receptores de Canabinoides
3.
Behav Brain Res ; 449: 114475, 2023 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-37146720

RESUMO

The increase in social acceptance and legalization of cannabis over the last several years is likely to increase the prevalence of its co-use with alcohol. In spite of this, the potential for effects unique to co-use of these drugs, especially in moderate doses, has been studied relatively infrequently. We addressed this in the current study using a laboratory rat model of voluntary drug intake. Periadolescent male and female Long-Evans rats were allowed to orally self-administer ethanol, Δ9-tetrahydrocannibinol (THC), both drugs, or their vehicle controls from postnatal day (P) 30 to P47. They were subsequently trained and tested on an instrumental behavior task that assesses attention, working memory and behavioral flexibility. Similar to previous work, consumption of THC reduced both ethanol and saccharin intake in both sexes. Blood samples taken 14 h following the final self-administration session revealed that females had higher levels of the THC metabolite THC-COOH. There were modest effects of THC on our delayed matching to position (DMTP) task, with females exhibiting reduced performance compared to their control group or male, drug using counterparts. However, there were no significant effects of co-use of ethanol or THC on DMTP performance, and drug effects were also not apparent in the reversal learning phase of the task when non-matching to position was required as the correct response. These findings are consistent with other published studies in rodent models showing that use of these drugs in low to moderate doses does not significantly impact memory or behavioral flexibility following a protracted abstinence period.


Assuntos
Alucinógenos , Memória de Curto Prazo , Ratos , Animais , Masculino , Feminino , Ratos Long-Evans , Dronabinol/farmacologia , Etanol/farmacologia , Alucinógenos/farmacologia
4.
bioRxiv ; 2023 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-36778500

RESUMO

The increase in social acceptance and legalization of cannabis over the last several years is likely to increase the prevalence of its co-use with alcohol. In spite of this, the potential for effects unique to co-use of these drugs, especially in moderate doses, has been studied relatively infrequently. We addressed this in the current study using a laboratory rat model of voluntary drug intake. Periadolescent male and female Long-Evans rats were allowed to orally self-administer ethanol, Î" 9 -tetrahydrocannibinol (THC), both drugs, or their vehicle controls from postnatal day (P) 30 to P47. They were subsequently trained and tested on an instrumental behavior task that assesses attention, working memory and behavioral flexibility. Similar to previous work, consumption of THC reduced both ethanol and saccharin intake in both sexes. Blood samples taken 14h following the final self-administration session revealed that females had higher levels of the THC metabolite THC-COOH. There were modest effects of THC on our delayed matching to position (DMTP) task, with females exhibiting reduced performance compared to their control group or male, drug using counterparts. However, there were no significant effects of co-use of ethanol or THC on DMTP performance, and drug effects were also not apparent in the reversal learning phase of the task when non-matching to position was required as the correct response. These findings are consistent with other published studies in rodent models showing that use of these drugs in low to moderate doses does not significantly impact memory or behavioral flexibility following a protracted abstinence period.

5.
Front Aging Neurosci ; 15: 1055433, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36819730

RESUMO

With the recent legalization of inhaled cannabis for medicinal and recreational use, the elderly represents one of the newest, rapidly growing cohorts of cannabis users. To understand the neurobiological effects of cannabis on the aging brain, 19-20 months old mice were divided into three groups exposed to vaporized cannabis containing ~10% Δ9-THC, ~10% CBD, or placebo for 30 min each day. Voxel based morphometry, diffusion weighted imaging, and resting state functional connectivity data were gathered after 28 days of exposure and following a two-week washout period. Tail-flick, open field, and novel object preference tests were conducted to explore analgesic, anxiolytic, and cognitive effects of cannabis, respectively. Vaporized cannabis high in Δ9-THC and CBD achieved blood levels reported in human users. Mice showed antinociceptive effects to chronic Δ9-THC without tolerance while the anxiolytic and cognitive effects of Δ9-THC waned with treatment. CBD had no effect on any of the behavioral measures. Voxel based morphometry showed a decrease in midbrain dopaminergic volume to chronic Δ9-THC followed but an increase after a two-week washout. Fractional anisotropy values were reduced in the same area by chronic Δ9-THC, suggesting a reduction in gray matter volume. Cannabis high in CBD but not THC increased network strength and efficiency, an effect that persisted after washout. These data would indicate chronic use of inhaled cannabis high in Δ9-THC can be an effective analgesic but not for treatment of anxiety or cognitive decline. The dopaminergic midbrain system was sensitive to chronic Δ9-THC but not CBD showing robust plasticity in volume and water diffusivity prior to and following drug cessation an effect possibly related to the abuse liability of Δ9-THC. Chronic inhaled CBD resulted in enhanced global network connectivity that persisted after drug cessation. The behavioral consequences of this sustained change in brain connectivity remain to be determined.

6.
Methods Mol Biol ; 2576: 21-40, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36152175

RESUMO

Different mass spectrometric techniques have been used over the past decade to quantify endocannabinoids (eCBs) and related lipids. Even with the level of molecular fingerprinting accuracy of an instrument like the most advanced triple quadrupole mass spectrometer, if one is not getting the most optimized sample to the detector in a way that this improved technology can be of use, then advancements can be stymied. Here, our focus is on review and discussion of sample preparation methodologies used to isolate the eCB anandamide and its close congeners N-acyl ethanolamines and structural congeners (i.e., lipo amino acids, lipoamines, N-acyl amides) in biological fluids. Most of our focus will be on the analysis of these lipids in plasma/serum, but we will also discuss how the same techniques can be used for the analysis of saliva and breast milk.


Assuntos
Endocanabinoides , Etanolaminas , Aminoácidos , Animais , Endocanabinoides/metabolismo , Feminino , Humanos , Espectrometria de Massas , Leite/química
7.
BBA Adv ; 22022.
Artigo em Inglês | MEDLINE | ID: mdl-36643901

RESUMO

Maternal cannabis use during lactation may expose developing infants to cannabinoids (CBs) such as Δ-9-tetrahydrocannabinol (THC) and cannabidiol (CBD). CBs modulate lipid signaling molecules in the central nervous system in age- and cell-dependent ways, but their influence on the lipid composition of breast milk has yet to be established. This study investigates the effects of THC, CBD, or their combination on milk lipids by analyzing the stomach contents of CD1 mouse pups that have been nursed by dams injected with CBs on postnatal days (PND) 1 -10. Stomach contents were collected 2 hours after the last injection on PND10 and HPLC/MS/MS was used to identify and quantify over 80 endogenous lipid species and cannabinoids in the samples. We show that CBs differentially accumulate in milk, lead to widespread decreases in free fatty acids, decreases in N-acyl methionine species, increases N-linoleoyl species, as well as modulate levels of endogenous CBs (eCBs) AEA, 2-AG, and their structural congeners. Our data indicate the passage of CBs to pups through breast milk and that maternal CB exposure alters breast milk lipid compositions.

8.
Front Neurol ; 12: 651272, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34484091

RESUMO

While current therapeutic strategies for people living with human immunodeficiency virus type 1 (HIV-1) suppress virus replication peripherally, viral proteins such as transactivator of transcription (Tat) enter the central nervous system early upon infection and contribute to chronic inflammatory conditions even alongside antiretroviral treatment. As demand grows for supplemental strategies to combat virus-associated pathology presenting frequently as HIV-associated neurocognitive disorders (HAND), the present study aimed to characterize the potential utility of inhibiting monoacylglycerol lipase (MAGL) activity to increase inhibitory activity at cannabinoid receptor-type 1 receptors through upregulation of 2-arachidonoylglycerol (2-AG) and downregulation of its degradation into proinflammatory metabolite arachidonic acid (AA). The MAGL inhibitor MJN110 significantly reduced intracellular calcium and increased dendritic branching complexity in Tat-treated primary frontal cortex neuron cultures. Chronic MJN110 administration in vivo increased 2-AG levels in the prefrontal cortex (PFC) and striatum across Tat(+) and Tat(-) groups and restored PFC N-arachidonoylethanolamine (AEA) levels in Tat(+) subjects. While Tat expression significantly increased rate of reward-related behavioral task acquisition in a novel discriminative stimulus learning and cognitive flexibility assay, MJN110 altered reversal acquisition specifically in Tat(+) mice to rates indistinguishable from Tat(-) controls. Collectively, our results suggest a neuroprotective role of MAGL inhibition in reducing neuronal hyperexcitability, restoring dendritic arborization complexity, and mitigating neurocognitive alterations driven by viral proteins associated with latent HIV-1 infection.

9.
Cannabis Cannabinoid Res ; 6(3): 211-220, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34115948

RESUMO

Opioids are effective analgesics; however, there are many negative consequences of chronic use. One important side effect of chronic opioid use is the continuous engagement of the immune response that can exacerbate chronic pain. The opioid, morphine, initiates a Toll-like receptor 4 (TLR4) signaling cascade that drives the activation of NOD-, LRR-, and pyrin domain-containing protein 3 (NLRP3) inflammasome proteins, resulting in cytokine production and effectively creating a positive feedback loop for continuous TLR4 activation. In addition to driving cytokine production, morphine drives changes in proinflammatory lipid signaling. The alteration of both cytokine and lipid signaling systems by morphine suggests that its chronic use leads to a pathological immune response that would benefit from targeted therapy. Engaging the endogenous cannabinoid system has shown therapeutic benefit, particularly regarding its anti-inflammatory and immunosuppressive effects. Promising preclinical and clinical investigations suggest that cannabidiol (CBD) is an effective adjuvant for treatment of symptoms of opioid use disorders; however, the mechanism through which CBD drives this outcome is unclear. One potential source of insight into this mechanism is in how CBD regulates immune regulators such as cytokines and lipid signaling systems, including endocannabinoids and related immune-responsive lipids. In this review, we outline the immune response to chronic opioid use as well as CBD in the context of a lipopolysaccharide-induced immune response and speculate on the mechanism of CBD as a modulator of chronic opioid-induced immune system dysregulation.


Assuntos
Analgésicos Opioides/farmacologia , Canabidiol/farmacologia , Morfina/farmacologia , Analgésicos Opioides/efeitos adversos , Analgésicos Opioides/imunologia , Animais , Canabidiol/imunologia , Citocinas/farmacologia , Endocanabinoides/metabolismo , Humanos , Inflamassomos , Inflamação/metabolismo , Metabolismo dos Lipídeos , Lipopolissacarídeos/farmacologia , Morfina/efeitos adversos , Morfina/imunologia , Receptor 4 Toll-Like/metabolismo
10.
J Transl Med ; 19(1): 220, 2021 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-34030718

RESUMO

BACKGROUND: The phytocannabinoid cannabidiol (CBD) exhibits anxiolytic activity and has been promoted as a potential treatment for post-traumatic stress disorders. How does CBD interact with the brain to alter behavior? We hypothesized that CBD would produce a dose-dependent reduction in brain activity and functional coupling in neural circuitry associated with fear and defense. METHODS: During the scanning session awake mice were given vehicle or CBD (3, 10, or 30 mg/kg I.P.) and imaged for 10 min post treatment. Mice were also treated with the 10 mg/kg dose of CBD and imaged 1 h later for resting state BOLD functional connectivity (rsFC). Imaging data were registered to a 3D MRI mouse atlas providing site-specific information on 138 different brain areas. Blood samples were collected for CBD measurements. RESULTS: CBD produced a dose-dependent polarization of activation along the rostral-caudal axis of the brain. The olfactory bulb and prefrontal cortex showed an increase in positive BOLD whereas the brainstem and cerebellum showed a decrease in BOLD signal. This negative BOLD affected many areas connected to the ascending reticular activating system (ARAS). The ARAS was decoupled to much of the brain but was hyperconnected to the olfactory system and prefrontal cortex. CONCLUSION: The CBD-induced decrease in ARAS activity is consistent with an emerging literature suggesting that CBD reduces autonomic arousal under conditions of emotional and physical stress.


Assuntos
Canabidiol , Animais , Encéfalo , Canabidiol/farmacologia , Medo , Imageamento por Ressonância Magnética , Camundongos , Vigília
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA