Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Physiol Rep ; 10(20): e15463, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36301719

RESUMO

Pathological accumulation of intrahepatic triglyceride underpins the early stages of nonalcoholic fatty liver disease (NAFLD) and can progress to fibrosis, cirrhosis, and cancer of the liver. Studies in humans suggest that consumption of a diet enriched in saturated compared to unsaturated fatty acids (FAs), is more detrimental to liver fat accumulation and metabolism. However, the reasons for the divergence remain unclear and physiologically-relevant cellular models are required. Therefore, the aims of this study were to investigate the effect of modifying media composition, concentration, and treatment frequency of sugars, FAs and insulin on intrahepatocellular triglyceride content and intracellular glucose, FA and circadian function. Huh7 cells were treated with 2% human serum and a combination of sugars and FAs (low fat low sugar [LFLS], high fat low sugar [HFLS], or high fat high sugar [HFHS]) enriched in either unsaturated (OPLA) or saturated (POLA) FAs for 2, 4, or 7 days with a daily or alternating treatment regime. Stable isotope tracers were utilized to investigate basal and/or insulin-responsive changes in hepatocyte metabolism in response to different treatment regimes. Cell viability, media biochemistry, intracellular metabolism, and circadian biology were quantified. The FA composition of the media (OPLA vs. POLA) did not influence cell viability or intracellular triglyceride content in hepatocytes. In contrast, POLA-treated cells had lower FA oxidation and media acetate, and with higher FA concentrations, displayed lower intracellular glycogen content and diminished insulin stimulation of glycogenesis, compared to OPLA-treated cells. The addition of HFHS also had profound effects on circadian oscillation and gene expression. Cells treated daily with HFHS for at least 4 days resulted in a cellular model displaying characteristics of early stage NAFLD seen in humans. Repeated treatment for longer durations (≥7 days) may provide opportunities to investigate lipid and glucose metabolism in more severe stages of NAFLD.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Humanos , Triglicerídeos/metabolismo , Hepatopatia Gordurosa não Alcoólica/metabolismo , Metabolismo dos Lipídeos , Fígado/metabolismo , Glucose/metabolismo , Insulina/metabolismo , Ácidos Graxos/metabolismo
2.
J Clin Endocrinol Metab ; 107(6): e2532-e2544, 2022 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-35137184

RESUMO

CONTEXT: Genetic variants affecting the nuclear hormone receptor coactivator steroid receptor coactivator, SRC-1, have been identified in people with severe obesity and impair melanocortin signaling in cells and mice. As a result, obese patients with SRC-1 deficiency are being treated with a melanocortin 4 receptor agonist in clinical trials. OBJECTIVE: Here, our aim was to comprehensively describe and characterize the clinical phenotype of SRC-1 variant carriers to facilitate diagnosis and clinical management. METHODS: In genetic studies of 2462 people with severe obesity, we identified 23 rare heterozygous variants in SRC-1. We studied 29 adults and 18 children who were SRC-1 variant carriers and performed measurements of metabolic and endocrine function, liver imaging, and adipose tissue biopsies. Findings in adult SRC-1 variant carriers were compared to 30 age- and body mass index (BMI)-matched controls. RESULTS: The clinical spectrum of SRC-1 variant carriers included increased food intake in children, normal basal metabolic rate, multiple fractures with minimal trauma (40%), persistent diarrhea, partial thyroid hormone resistance, and menorrhagia. Compared to age-, sex-, and BMI-matched controls, adult SRC-1 variant carriers had more severe adipose tissue fibrosis (46.2% vs 7.1% respectively, P = .03) and a suggestion of increased liver fibrosis (5/13 cases vs 2/13 in controls, odds ratio = 3.4), although this was not statistically significant. CONCLUSION: SRC-1 variant carriers exhibit hyperphagia in childhood, severe obesity, and clinical features of partial hormone resistance. The presence of adipose tissue fibrosis and hepatic fibrosis in young patients suggests that close monitoring for the early development of obesity-associated metabolic complications is warranted.


Assuntos
Coativador 1 de Receptor Nuclear , Obesidade Mórbida , Feminino , Fibrose , Humanos , Masculino , Coativador 1 de Receptor Nuclear/genética , Obesidade Mórbida/complicações , Obesidade Mórbida/genética
3.
JCI Insight ; 6(16)2021 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-34264866

RESUMO

The α-ketoglutarate-dependent dioxygenase, prolyl-4-hydroxylase 3 (PHD3), is an HIF target that uses molecular oxygen to hydroxylate peptidyl prolyl residues. Although PHD3 has been reported to influence cancer cell metabolism and liver insulin sensitivity, relatively little is known about the effects of this highly conserved enzyme in insulin-secreting ß cells in vivo. Here, we show that the deletion of PHD3 specifically in ß cells (ßPHD3KO) was associated with impaired glucose homeostasis in mice fed a high-fat diet. In the early stages of dietary fat excess, ßPHD3KO islets energetically rewired, leading to defects in the management of pyruvate fate and a shift from glycolysis to increased fatty acid oxidation (FAO). However, under more prolonged metabolic stress, this switch to preferential FAO in ßPHD3KO islets was associated with impaired glucose-stimulated ATP/ADP rises, Ca2+ fluxes, and insulin secretion. Thus, PHD3 might be a pivotal component of the ß cell glucose metabolism machinery in mice by suppressing the use of fatty acids as a primary fuel source during the early phases of metabolic stress.


Assuntos
Ácidos Graxos/efeitos adversos , Glucose/metabolismo , Resistência à Insulina , Células Secretoras de Insulina/enzimologia , Pró-Colágeno-Prolina Dioxigenase/metabolismo , Animais , Dieta Hiperlipídica/efeitos adversos , Modelos Animais de Doenças , Feminino , Glicólise , Humanos , Secreção de Insulina , Metabolismo dos Lipídeos , Masculino , Camundongos , Camundongos Knockout , Oxirredução , Pró-Colágeno-Prolina Dioxigenase/genética
4.
Physiol Rep ; 8(13): e14482, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32643289

RESUMO

BACKGROUND AND AIMS: Nonalcoholic fatty liver disease (NAFLD) begins with steatosis, where a mixed macrovesicular pattern of large and small lipid droplets (LDs) develops. Since in vitro models recapitulating this are limited, the aims of this study were to develop mixed macrovesicular steatosis in immortalized hepatocytes and investigate effects on intracellular metabolism by altering nutritional substrates. METHODS: Huh7 cells were cultured in 11 mM glucose and 2% human serum (HS) for 7 days before additional sugars and fatty acids (FAs), either with 200 µM FAs (low fat low sugar; LFLS), 5.5 mM fructose + 200 µM FAs (low fat high sugar; LFHS), or 5.5 mM fructose + 800 µM FAs (high fat high sugar; HFHS), were added for 7 days. FA metabolism, lipid droplet characteristics, and transcriptomic signatures were investigated. RESULTS: Between the LFLS and LFHS conditions, there were few notable differences. In the HFHS condition, intracellular triacylglycerol (TAG) was increased and the LD pattern and distribution was similar to that found in primary steatotic hepatocytes. HFHS-treated cells had lower levels of de novo-derived FAs and secreted larger, TAG-rich lipoprotein particles. RNA sequencing and gene set enrichment analysis showed changes in several pathways including those involved in metabolism and cell cycle. CONCLUSIONS: Repeated doses of HFHS treatment resulted in a cellular model of NAFLD with a mixed macrovesicular LD pattern and metabolic dysfunction. Since these nutrients have been implicated in the development of NAFLD in humans, the model provides a good physiological basis for studying NAFLD development or regression in vitro.


Assuntos
Ácidos Graxos/metabolismo , Glucose/metabolismo , Hepatócitos/metabolismo , Gotículas Lipídicas/metabolismo , Hepatopatia Gordurosa não Alcoólica/metabolismo , Linhagem Celular Tumoral , Células Cultivadas , Hepatócitos/patologia , Humanos , Gotículas Lipídicas/patologia , Hepatopatia Gordurosa não Alcoólica/genética , Transcriptoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA