Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Ecol Evol ; 14(4): e11059, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38571795

RESUMO

The R package popharvest was designed to help assess the sustainability of offtake in birds when only limited demographic information is available. In this article, we describe some basics of harvest theory and then discuss several considerations when using the different approaches in popharvest to assess whether observed harvests are unsustainable. Throughout, we emphasize the importance of distinguishing between the scientific and policy aspects of managing offtake. The principal product of popharvest is a sustainable harvest index (SHI), which can indicate whether the harvest is unsustainable but not the converse. SHI is estimated based on a simple, scalar model of logistic population growth, whose parameters may be estimated using limited knowledge of demography. Uncertainty in demography leads to a distribution of SHI values and it is the purview of the decision-maker to determine what amounts to an acceptable risk when failing to reject the null hypothesis of sustainability. The attitude toward risk, in turn, will likely depend on the decision-maker's objective(s) in managing offtake. The management objective as specified in popharvest is a social construct, informed by biology, but ultimately it is an expression of social values that usually vary among stakeholders. We therefore suggest that any standardization of criteria for management objectives in popharvest will necessarily be subjective and, thus, hard to defend in diverse decision-making situations. Because of its ease of use, diverse functionalities, and a minimal requirement of demographic information, we expect the use of popharvest to become widespread. Nonetheless, we suggest that while popharvest provides a useful platform for rapid assessments of sustainability, it cannot substitute for sufficient expertise and experience in harvest theory and management.

2.
Curr Biol ; 33(6): 1162-1170.e4, 2023 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-36863340

RESUMO

Many Arctic-breeding animals are at risk from local extirpation associated with habitat constriction and alterations in phenology in their Arctic environment as a result of rapid global warming.1 Migratory species face additional increasing anthropogenic pressures along their migratory routes such as habitat destruction, droughts, creation of barriers, and overexploitation.2,3 Such species can only persist if they adjust their migration, timing of breeding, and range.4 Here, we document both the abrupt (∼10 years) formation of a new migration route and a disjunct breeding population of the pink-footed goose (Anser brachyrhynchus) on Novaya Zemlya, Russia, almost 1,000 km away from the original breeding grounds in Svalbard. The population has grown to 3,000-4,000 birds, explained by intrinsic growth and continued immigration from the original route. The colonization was enabled by recent warming on Novaya Zemlya. We propose that social behavior of geese, resulting in cultural transmission of migration behavior among conspecifics as well as in mixed-species flocks, is key to this fast development and acts as a mechanism enabling ecological rescue in a rapidly changing world.


Assuntos
Migração Animal , Gansos , Animais , Estações do Ano , Svalbard , Aquecimento Global , Regiões Árticas
3.
Ambio ; 51(1): 209-225, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33782852

RESUMO

Most European goose populations have increased exponentially, and this has increasingly brought them into conflict with human activities. To manage this conflict, we used multi-criteria decision analysis to help set population targets for a super-abundant population of greylag geese (Anser anser). We relied on expert elicitation to assess the consequences of varying goose abundance on nine ecological, economic, and societal objectives. Representatives from national governments and from non-governmental organizations then weighted the objectives based on their perceived relative importance, and we used a consensus-convergence model to reach stakeholder agreement on the tradeoffs among objectives. The preferred population targets for two management units represent about a 20% reduction from current abundances, which from a management perspective would require considerable effort above and beyond current population-control measures. We believe that multi-criteria decision analysis can provide a systematic and transparent framework for building consensus among diverse stakeholders in a wide array of human-wildlife conflicts.


Assuntos
Animais Selvagens , Gansos , Animais , Humanos , Densidade Demográfica , Fatores Socioeconômicos
4.
Ecol Evol ; 11(23): 16562-16571, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34938457

RESUMO

Bird harvest for recreational purposes or as a source for food is an important activity worldwide. Assessing or mitigating the impact of these additional sources of mortality on bird populations is therefore crucial issue. The sustainability of harvest levels is however rarely documented, because knowledge of their population dynamics remains rudimentary for many bird species. Some helpful approaches using limited demographic data can be used to provide initial assessment of the sustainable use of harvested bird populations, and help adjusting harvest levels accordingly. The Demographic Invariant Method (DIM) is used to detect overharvesting. In complement, the Potential Take Level (PTL) approach may allow setting a level of take with regard to management objectives and/or to assess whether current harvest levels meet these objectives. Here, we present the R package popharvest that implements these two approaches in a simple and straightforward way. The package provides users with a set of flexible functions whose arguments can be adapted to existing knowledge about population dynamics. Also, popharvest enables users to test scenarios or propagate uncertainty in demographic parameters to the assessment of sustainability through easily programming Monte Carlo simulations. The simplicity of the package makes it a useful toolbox for wildlife managers or policymakers. This paper provides them with backgrounds about the DIM and PTL approaches and illustrates the use of popharvest's functionalities in this context.

5.
Integr Environ Assess Manag ; 16(6): 841-852, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32584467

RESUMO

Nonpoint source water quality management is challenged with allocating uncertain management actions and monitoring their performance in the absence of state-dependent decision making. This adaptive management context can be expressed as a multiarmed bandit problem. Multiarmed bandit strategies attempt to balance the exploitation of actions that appear to maximize performance with the exploration of uncertain, but potentially better, actions. We performed a test of multiarmed bandit strategies to inform adaptive water quality management in Massachusetts, USA. Conservation and restoration practitioners were tasked with allocating household wastewater treatments to minimize N inputs to impaired waters. We obtained time series of N monitoring data from 3 wastewater treatment types and organized them chronologically and randomly. The chronological data set represented nonstationary performance based on recent monitoring data, whereas the random data set represented stationary performance. We tested 2 multiarmed bandit strategies in hypothetical experiments to sample from the treatment data through 20 sequential decisions. A deterministic probability-matching strategy allocated treatments with the highest probability of success regarding their performance at each decision. A randomized probability-matching strategy randomly allocated treatments according to their probability of success at each decision. The strategies were compared with a nonadaptive strategy that equally allocated treatments at each decision. Results indicated that equal allocation is useful for learning in nonstationary situations but tended to overexplore inferior treatments and thus did not maximize performance when compared with the other strategies. Deterministic probability matching maximized performance in many stationary situations, but the strategy did not adequately explore treatments and converged on inferior treatments in nonstationary situations. Randomized probability matching balanced performance and learning in stationary situations, but the strategy could converge on inferior treatments in nonstationary situations. These findings provide evidence that probability-matching strategies are useful for adaptive management. Integr Environ Assess Manag 2020;16:841-852. © 2020 The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals LLC on behalf of Society of Environmental Toxicology & Chemistry (SETAC).


Assuntos
Ecotoxicologia , Qualidade da Água , Massachusetts , Probabilidade , Medição de Risco
6.
J Environ Manage ; 249: 109380, 2019 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-31434050

RESUMO

This article aims to understand decision making under uncertainty and risk, with a case study on Cape Cod, Massachusetts. Decision makers need to consider imperfect information on the cost and effectiveness of advanced nitrogen-removing on-site wastewater treatment systems as options to mitigate water quality degradation. Research included modeling nitrogen load reduction to impaired coastal waters from seven treatment system technologies and eliciting expert knowledge on their costs. Predictions of nitrogen load removal and cost for each technology incorporated variation in effectiveness and uncertainty in household water use, costs, and expert confidence in costs. The predictions were evaluated using the Pareto efficiency concept to reveal tradeoffs between cost and effectiveness. The stochastic dominance index was used to identify preferred technologies for risk-averse decision making, assuming no further learning is possible. Lastly, the predictions were combined into a cost-effectiveness metric to estimate the expected payoff of implementing the best treatment system in the face of uncertainty and the expected payoff of learning which treatment systems are most cost-effective over time. The expected value of perfect information was calculated as the difference between the expected payoffs. Three technologies revealed Pareto efficient tradeoffs between cost and effectiveness, whereas one technology was the preferred risk-averse option in the absence of future learning. There was a high expected value of perfect information, which could motivate adaptive management on Cape Cod. This research demonstrated decision analysis methods to guide future research and decision making toward meeting water quality objectives and reducing uncertainty.


Assuntos
Tomada de Decisões , Nitrogênio , Análise Custo-Benefício , Massachusetts , Incerteza
7.
Ecol Appl ; 29(7): e01962, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31243844

RESUMO

Climate change and urban growth impact habitats, species, and ecosystem services. To buffer against global change, an established adaptation strategy is designing protected areas to increase representation and complementarity of biodiversity features. Uncertainty regarding the scale and magnitude of landscape change complicates reserve planning and exposes decision makers to the risk of failing to meet conservation goals. Conservation planning tends to treat risk as an absolute measure, ignoring the context of the management problem and risk preferences of stakeholders. Application of risk management theory to conservation emphasizes the diversification of a portfolio of assets, with the goal of reducing the impact of system volatility on investment return. We use principles of Modern Portfolio Theory (MPT), which quantifies risk as the variance and correlation among assets, to formalize diversification as an explicit strategy for managing risk in climate-driven reserve design. We extend MPT to specify a framework that evaluates multiple conservation objectives, allows decision makers to balance management benefits and risk when preferences are contested or unknown, and includes additional decision options such as parcel divestment when evaluating candidate reserve designs. We apply an efficient search algorithm that optimizes portfolio design for large conservation problems and a game theoretic approach to evaluate portfolio trade-offs that satisfy decision makers with divergent benefit and risk tolerances, or when a single decision maker cannot resolve their own preferences. Evaluating several risk profiles for a case study in South Carolina, our results suggest that a reserve design may be somewhat robust to differences in risk attitude but that budgets will likely be important determinants of conservation planning strategies, particularly when divestment is considered a viable alternative. We identify a possible fiscal threshold where adequate resources allow protecting a sufficiently diverse portfolio of habitats such that the risk of failing to achieve conservation objectives is considerably lower. For a range of sea-level rise projections, conversion of habitat to open water (14-180%) and wetland loss (1-7%) are unable to be compensated under the current protected network. In contrast, optimal reserve design outcomes are predicted to ameliorate expected losses relative to current and future habitat protected under the existing conservation estate.


Assuntos
Mudança Climática , Ecossistema , Biodiversidade , Conservação dos Recursos Naturais , Incerteza
8.
PLoS One ; 13(6): e0199326, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29958290

RESUMO

Few if any natural resource systems are completely understood and fully observed. Instead, there almost always is uncertainty about the way a system works and its status at any given time, which can limit effective management. A natural approach to uncertainty is to allocate time and effort to the collection of additional data, on the reasonable assumption that more information will facilitate better understanding and lead to better management. But the collection of more data, either through observation or investigation, requires time and effort that often can be put to other conservation activities. An important question is whether the use of limited resources to improve understanding is justified by the resulting potential for improved management. In this paper we address directly a change in value from new information collected through investigation. We frame the value of information in terms of learning through the management process itself, as well as learning through investigations that are external to the management process but add to our base of understanding. We provide a conceptual framework and metrics for this issue, and illustrate them with examples involving Florida scrub-jays (Aphelocoma coerulescens).


Assuntos
Incêndios , Modelos Teóricos , Recursos Naturais , Teorema de Bayes , Tomada de Decisões , Florida/epidemiologia , Humanos
9.
PLoS One ; 13(3): e0193093, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29543830

RESUMO

Conversion of wild habitats to human dominated landscape is a major cause of biodiversity loss. An approach to mitigate the impact of habitat loss consists of designating reserves where habitat is preserved and managed. Determining the most valuable areas to preserve in a landscape is called the reserve design problem. There exists several possible formulations of the reserve design problem, depending on the objectives and the constraints. In this article, we considered the dynamic problem of designing a reserve that contains a desired area of several key habitats. The dynamic case implies that the reserve cannot be designed in one time step, due to budget constraints, and that habitats can be lost before they are reserved, due for example to climate change or human development. We proposed two heuristics strategies that can be used to select sites to reserve each year for large reserve design problem. The first heuristic is a combination of the Marxan and site-ordering algorithms and the second heuristic is an augmented version of the common naive myopic heuristic. We evaluated the strategies on several simulated examples and showed that the augmented greedy heuristic is particularly interesting when some of the habitats to protect are particularly threatened and/or the compactness of the network is accounted for.


Assuntos
Algoritmos , Mudança Climática , Heurística , Desenvolvimento Humano , Modelos Biológicos , Humanos
10.
Ecol Appl ; 28(2): 427-441, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29205644

RESUMO

The demography of many European waterbirds is not well understood because most countries have conducted little monitoring and assessment, and coordination among countries on waterbird management has little precedent. Yet intergovernmental treaties now mandate the use of sustainable, adaptive harvest strategies, whose development is challenged by a paucity of demographic information. In this study, we explore how a combination of allometric relationships, fragmentary monitoring and research information, and expert judgment can be used to estimate the parameters of a theta-logistic population model, which in turn can be used in a Markov decision process to derive optimal harvesting strategies. We show how to account for considerable parametric uncertainty, as well as for different management objectives. We illustrate our methodology with a poorly understood population of Taiga Bean Geese (Anser fabalis fabalis), which is a popular game bird in Fennoscandia. Our results for Taiga Bean Geese suggest that they may have demographic rates similar to other, well-studied species of geese, and our model-based predictions of population size are consistent with the limited monitoring information available. Importantly, we found that by using a Markov decision process, a simple scalar population model may be sufficient to guide harvest management of this species, even if its demography is age structured. Finally, we demonstrated how two different management objectives can lead to very different optimal harvesting strategies, and how conflicting objectives may be traded off with each other. This approach will have broad application for European waterbirds by providing preliminary estimates of key demographic parameters, by providing insights into the monitoring and research activities needed to corroborate those estimates, and by producing harvest management strategies that are optimal with respect to the managers' objectives, options, and available demographic information.


Assuntos
Gansos , Modelos Biológicos , Animais , Europa (Continente) , Cadeias de Markov , Dinâmica Populacional
11.
PLoS One ; 12(8): e0182934, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28800591

RESUMO

Adaptive management involves learning-oriented decision making in the presence of uncertainty about the responses of a resource system to management. It is implemented through an iterative sequence of decision making, monitoring and assessment of system responses, and incorporating what is learned into future decision making. Decision making at each point is informed by a value or objective function, for example total harvest anticipated over some time frame. The value function expresses the value associated with decisions, and it is influenced by system status as updated through monitoring. Often, decision making follows shortly after a monitoring event. However, it is certainly possible for the cadence of decision making to differ from that of monitoring. In this paper we consider different combinations of annual and biennial decision making, along with annual and biennial monitoring. With biennial decision making decisions are changed only every other year; with biennial monitoring field data are collected only every other year. Different cadences of decision making combine with annual and biennial monitoring to define 4 scenarios. Under each scenario we describe optimal valuations for active and passive adaptive decision making. We highlight patterns in valuation among scenarios, depending on the occurrence of monitoring and decision making events. Differences between years are tied to the fact that every other year a new decision can be made no matter what the scenario, and state information is available to inform that decision. In the subsequent year, however, in 3 of the 4 scenarios either a decision is repeated or monitoring does not occur (or both). There are substantive differences in optimal values among the scenarios, as well as the optimal policies producing those values. Especially noteworthy is the influence of monitoring cadence on valuation in some years. We highlight patterns in policy and valuation among the scenarios, and discuss management implications and extensions.


Assuntos
Compreensão , Tomada de Decisões , Modelos Estatísticos , Alocação de Recursos/estatística & dados numéricos , Humanos , Aprendizagem , Incerteza
12.
PLoS One ; 12(4): e0175411, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28419113

RESUMO

Wildlife managers routinely seek to establish sustainable limits of sport harvest or other regulated forms of take while confronted with considerable uncertainty. A growing body of ecological research focuses on methods to describe and account for uncertainty in management decision-making and to prioritize research and monitoring investments to reduce the most influential uncertainties. We used simulation methods incorporating measures of demographic uncertainty to evaluate risk of overharvest and prioritize information needs for North American sea ducks (Tribe Mergini). Sea ducks are popular game birds in North America, yet they are poorly monitored and their population dynamics are poorly understood relative to other North American waterfowl. There have been few attempts to assess the sustainability of harvest of North American sea ducks, and no formal harvest strategy exists in the U.S. or Canada to guide management. The popularity of sea duck hunting, extended hunting opportunity for some populations (i.e., special seasons and/or bag limits), and population declines have led to concern about potential overharvest. We used Monte Carlo simulation to contrast estimates of allowable harvest and observed harvest and assess risk of overharvest for 7 populations of North American sea ducks: the American subspecies of common eider (Somateria mollissima dresseri), eastern and western populations of black scoter (Melanitta americana) and surf scoter (M. perspicillata), and continental populations of white-winged scoter (M. fusca) and long-tailed duck (Clangula hyemalis). We combined information from empirical studies and the opinions of experts through formal elicitation to create probability distributions reflecting uncertainty in the individual demographic parameters used in this assessment. Estimates of maximum growth (rmax), and therefore of allowable harvest, were highly uncertain for all populations. Long-tailed duck and American common eider appeared to be at high risk of overharvest (i.e., observed harvest < allowable harvest in 5-7% and 19-26% of simulations, respectively depending on the functional form of density dependence), whereas the other populations appeared to be at moderate risk to low risk (observed harvest < allowable harvest in 22-68% of simulations, again conditional on the form of density dependence). We also evaluated the sensitivity of the difference between allowable and observed harvest estimates to uncertainty in individual demographic parameters to prioritize information needs. We found that uncertainty in overall fecundity had more influence on comparisons of allowable and observed harvest than adult survival or observed harvest for all species except long-tailed duck. Although adult survival was characterized by less uncertainty than individual components of fecundity, it was identified as a high priority information need given the sensitivity of growth rate and allowable harvest to this parameter. Uncertainty about population size was influential in the comparison of observed and allowable harvest for 5 of the 6 populations where it factored into the assessment. While this assessment highlights a high degree of uncertainty in allowable harvest, it provides a framework for integration of improved data from future research and monitoring. It could also serve as the basis for harvest strategy development as management objectives and regulatory alternatives are specified by the management community.


Assuntos
Conservação dos Recursos Naturais/métodos , Patos/fisiologia , Ecossistema , Estações do Ano , Algoritmos , Animais , Cruzamento , Canadá , Patos/classificação , Prova Pericial , Feminino , Fertilidade/fisiologia , Geografia , Humanos , Masculino , Método de Monte Carlo , Oceanos e Mares , Densidade Demográfica , Dinâmica Populacional , Pesquisadores/estatística & dados numéricos , Incerteza , Estados Unidos
13.
Ambio ; 46(Suppl 2): 275-289, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28215011

RESUMO

An International Species Management Plan for the Svalbard population of the pink-footed goose was adopted under the Agreement on the Conservation of African-Eurasian Migratory Waterbirds in 2012, the first case of adaptive management of a migratory waterbird population in Europe. An international working group (including statutory agencies, NGO representatives and experts) agreed on objectives and actions to maintain the population in favourable conservation status, while accounting for biodiversity, economic and recreational interests. Agreements include setting a population target to reduce agricultural conflicts and avoid tundra degradation, and using hunting in some range states to maintain stable population size. As part of the adaptive management procedures, adjustment to harvest is made annually subject to population status. This has required streamlining of monitoring and assessment activities. Three years after implementation, indicators suggest the attainment of management results. Dialogue, consensus-building and engagement among stakeholders represent the major process achievements.


Assuntos
Agricultura , Conservação dos Recursos Naturais , Ecossistema , Gansos/fisiologia , Migração Animal , Animais , Europa (Continente) , Densidade Demográfica , Dinâmica Populacional , Svalbard
14.
PLoS One ; 11(6): e0157373, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27314852

RESUMO

Markov decision processes (MDPs), which involve a temporal sequence of actions conditioned on the state of the managed system, are increasingly being applied in natural resource management. This study focuses on the modification of a traditional MDP to account for those cases in which an action must be chosen after a significant time lag in observing system state, but just prior to a new observation. In order to calculate an optimal decision policy under these conditions, possible actions must be conditioned on the previous observed system state and action taken. We show how to solve these problems when the state transition structure is known and when it is uncertain. Our focus is on the latter case, and we show how actions must be conditioned not only on the previous system state and action, but on the probabilities associated with alternative models of system dynamics. To demonstrate this framework, we calculated and simulated optimal, adaptive policies for MDPs with lagged states for the problem of deciding annual harvest regulations for mallards (Anas platyrhynchos) in the United States. In this particular example, changes in harvest policy induced by the use of lagged information about system state were sufficient to maintain expected management performance (e.g. population size, harvest) even in the face of an uncertain system state at the time of a decision.


Assuntos
Anseriformes , Conservação dos Recursos Naturais , Tomada de Decisões , Recursos Naturais , Animais , Humanos , Cadeias de Markov , Lagoas , Densidade Demográfica , Estados Unidos
15.
Ecol Evol ; 5(2): 466-74, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25691972

RESUMO

The "value of information" (VOI) is a generic term for the increase in value resulting from better information to guide management, or alternatively, the value foregone under uncertainty about the impacts of management (Yokota and Thompson, Medical Decision Making 2004; 24: 287). The value of information can be characterized in terms of several metrics, including the expected value of perfect information and the expected value of partial information. We extend the technical framework for the value of information by further developing the relationship between value metrics for partial and perfect information and describing patterns of their performance. We use two different expressions for the expected value of partial information to highlight its relationship to the expected value of perfect information. We also develop the expected value of partial information for hierarchical uncertainties. We highlight patterns in the value of information for the Svalbard population of the pink-footed goose (Anser brachyrhynchus), a population that is subject to uncertainty in both reproduction and survival functions. The framework for valuing information is seen as having widespread potential in resource decision making, and serves as a motivation for resource monitoring, assessment, and collaboration.

16.
Ecol Appl ; 22(4): 1114-30, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22827122

RESUMO

The take of Nearctic songbirds for the caged-bird trade is an important cultural and economic activity in Mexico, but its sustainability has been questioned. We relied on the theta-logistic population model to explore options for setting allowable levels of take for 11 species of passerines that were subject to legal take in Mexico in 2010. Because estimates of population size necessary for making-periodic adjustments to levels of take are not routinely available, we examined the conditions under which a constant level of take might contribute to population depletion (i.e., a population below its level of maximum net productivity). The chance of depleting a population is highest when levels of take are based on population sizes that happen to be much lower or higher than the level of maximum net productivity, when environmental variation is relatively high and serially correlated, and when the interval between estimation of population size is relatively long (> or = 5 years). To estimate demographic rates of songbirds involved in the Mexican trade we relied on published information and allometric relationships to develop probability distributions for key rates, and then sampled from those distributions to characterize the uncertainty in potential levels of take. Estimates of the intrinsic rate of growth (r) were highly variable, but median estimates were consistent with those expected for relatively short-lived, highly fecund species. Allowing for the possibility of nonlinear density dependence generally resulted in allowable levels of take that were lower than would have been the case under an assumption of linearity. Levels of take authorized by the Mexican government in 2010 for the 11 species we examined were small in comparison to relatively conservative allowable levels of take (i.e., those intended to achieve 50% of maximum sustainable yield). However, the actual levels of take in Mexico are unknown and almost certainly exceed the authorized take. Also, the take of Nearctic songbirds in other Latin American and Caribbean countries ultimately must be considered in assessing population-level impacts.


Assuntos
Comércio , Conservação dos Recursos Naturais/métodos , Aves Canoras/fisiologia , Animais , Monitoramento Ambiental , México , Modelos Biológicos , Dinâmica Populacional
17.
J Environ Manage ; 92(5): 1385-94, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21168259

RESUMO

A formal framework for the adaptive management of waterfowl harvests was adopted by the U.S. Fish and Wildlife Service in 1995. The process admits competing models of waterfowl population dynamics and harvest impacts, and relies on model averaging to compute optimal strategies for regulating harvest. Model weights, reflecting the relative ability of the alternative models to predict changes in population size, are used in the model averaging and are updated each year based on a comparison of model predictions and observations of population size. Since its inception the adaptive harvest program has focused principally on mallards (Anas platyrhynchos), which constitute a large portion of the U.S. waterfowl harvest. Four competing models, derived from a combination of two survival and two reproductive hypotheses, were originally assigned equal weights. In the last year of available information (2007), model weights favored the weakly density-dependent reproductive hypothesis over the strongly density-dependent one, and the additive mortality hypothesis over the compensatory one. The change in model weights led to a more conservative harvesting policy than what was in effect in the early years of the program. Adaptive harvest management has been successful in many ways, but nonetheless has exposed the difficulties in defining management objectives, in predicting and regulating harvests, and in coping with the tradeoffs inherent in managing multiple waterfowl stocks exposed to a common harvest. The key challenge now facing managers is whether adaptive harvest management as an institution can be sufficiently adaptive, and whether the knowledge and experience gained from the process can be reflected in higher-level policy decisions.


Assuntos
Anseriformes , Conservação dos Recursos Naturais/métodos , Tomada de Decisões , Meio Ambiente , Política Ambiental , Aprendizagem , Dinâmica Populacional , Animais , Modelos Biológicos , Estados Unidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA