Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
2.
Artigo em Inglês | MEDLINE | ID: mdl-39005242

RESUMO

Background: Deep brain stimulation (DBS) can be an effective therapy to control motor signs in patients with Parkinson's disease (PD). However, subthalamic nucleus (STN) DBS can induce undesirable psychiatric adverse effects, including elevated mood. Case report: We reported a video case of a 73-year-old male implanted with bilateral STN DBS who experienced stimulation-induced elevated mood. A correlation between mood changes and enhanced activation of the ventromedial region in the left STN was observed. Discussion: This video case report illustrates STN DBS-induced elevated mood and enhances early symptom recognition for patients and diagnostic awareness for professionals.


Assuntos
Estimulação Encefálica Profunda , Doença de Parkinson , Núcleo Subtalâmico , Humanos , Estimulação Encefálica Profunda/efeitos adversos , Masculino , Núcleo Subtalâmico/fisiopatologia , Idoso , Doença de Parkinson/terapia , Doença de Parkinson/fisiopatologia , Gravação em Vídeo
3.
Mov Disord ; 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38877761

RESUMO

BACKGROUND: Responsive deep brain stimulation (rDBS) uses physiological signals to deliver stimulation when needed. rDBS is hypothesized to reduce stimulation-induced speech effects associated with continuous DBS (cDBS) in patients with essential tremor (ET). OBJECTIVE: To determine if rDBS reduces cDBS speech-related side effects while maintaining tremor suppression. METHODS: Eight ET participants with thalamic DBS underwent unilateral rDBS. Both speech evaluations and tremor severity were assessed across three conditions (DBS OFF, cDBS ON, and rDBS ON). Speech was analyzed using intelligibility ratings. Tremor severity was scored using the Fahn-Tolosa-Marin Tremor Rating Scale (TRS). RESULTS: During unilateral cDBS, participants experienced reduced speech intelligibility (P = 0.025) compared to DBS OFF. rDBS was not associated with a deterioration of intelligibility. Both rDBS (P = 0.026) and cDBS (P = 0.038) improved the contralateral TRS score compared to DBS OFF. CONCLUSIONS: rDBS maintained speech intelligibility without loss of tremor suppression. A larger prospective chronic study of rDBS in ET is justified. © 2024 International Parkinson and Movement Disorder Society.

4.
Nat Commun ; 15(1): 4602, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38816390

RESUMO

Circadian rhythms have been shown in the subthalamic nucleus (STN) in Parkinson's disease (PD), but only a few studies have focused on the globus pallidus internus (GPi). This retrospective study investigates GPi circadian rhythms in a large cohort of subjects with PD (130 recordings from 93 subjects) with GPi activity chronically recorded in their home environment. We found a significant change in GPi activity between daytime and nighttime in most subjects (82.4%), with a reduction in GPi activity at nighttime in 56.2% of recordings and an increase in activity in 26.2%. GPi activity in higher frequency bands ( > 20 Hz) was more likely to decrease at night and in patients taking extended-release levodopa medication. Our results suggest that circadian fluctuations in the GPi vary across individuals and that increased power at night might be due to the reemergence of pathological neural activity. These findings should be considered to ensure successful implementation of adaptive neurostimulation paradigms in the real-world.


Assuntos
Ritmo Circadiano , Estimulação Encefálica Profunda , Globo Pálido , Levodopa , Doença de Parkinson , Humanos , Globo Pálido/fisiopatologia , Doença de Parkinson/fisiopatologia , Ritmo Circadiano/fisiologia , Masculino , Feminino , Pessoa de Meia-Idade , Estudos Retrospectivos , Idoso , Levodopa/uso terapêutico , Núcleo Subtalâmico/fisiopatologia
5.
Front Hum Neurosci ; 18: 1320806, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38450221

RESUMO

The Deep Brain Stimulation (DBS) Think Tank XI was held on August 9-11, 2023 in Gainesville, Florida with the theme of "Pushing the Forefront of Neuromodulation". The keynote speaker was Dr. Nico Dosenbach from Washington University in St. Louis, Missouri. He presented his research recently published in Nature inn a collaboration with Dr. Evan Gordon to identify and characterize the somato-cognitive action network (SCAN), which has redefined the motor homunculus and has led to new hypotheses about the integrative networks underpinning therapeutic DBS. The DBS Think Tank was founded in 2012 and provides an open platform where clinicians, engineers, and researchers (from industry and academia) can freely discuss current and emerging DBS technologies, as well as logistical and ethical issues facing the field. The group estimated that globally more than 263,000 DBS devices have been implanted for neurological and neuropsychiatric disorders. This year's meeting was focused on advances in the following areas: cutting-edge translational neuromodulation, cutting-edge physiology, advances in neuromodulation from Europe and Asia, neuroethical dilemmas, artificial intelligence and computational modeling, time scales in DBS for mood disorders, and advances in future neuromodulation devices.

6.
Mol Psychiatry ; 29(4): 1075-1087, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38287101

RESUMO

Deep brain stimulation (DBS) has emerged as a promising treatment for select patients with refractory major depressive disorder (MDD). The clinical effectiveness of DBS for MDD has been demonstrated in meta-analyses, open-label studies, and a few controlled studies. However, randomized controlled trials have yielded mixed outcomes, highlighting challenges that must be addressed prior to widespread adoption of DBS for MDD. These challenges include tracking MDD symptoms objectively to evaluate the clinical effectiveness of DBS with sensitivity and specificity, identifying the patient population that is most likely to benefit from DBS, selecting the optimal patient-specific surgical target and stimulation parameters, and understanding the mechanisms underpinning the therapeutic benefits of DBS in the context of MDD pathophysiology. In this review, we provide an overview of the latest clinical evidence of MDD DBS effectiveness and the recent technological advancements that could transform our understanding of MDD pathophysiology, improve the clinical outcomes for MDD DBS, and establish a path forward to develop more effective neuromodulation therapies to alleviate depressive symptoms.


Assuntos
Estimulação Encefálica Profunda , Transtorno Depressivo Maior , Estimulação Encefálica Profunda/métodos , Humanos , Transtorno Depressivo Maior/terapia , Resultado do Tratamento , Transtorno Depressivo Resistente a Tratamento/terapia , Encéfalo/fisiopatologia
7.
J Neurosci ; 43(45): 7575-7586, 2023 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-37940596

RESUMO

Deep brain stimulation (DBS) is an effective therapy for various neurologic and neuropsychiatric disorders, involving chronic implantation of electrodes into target brain regions for electrical stimulation delivery. Despite its safety and efficacy, DBS remains an underutilized therapy. Advances in the field of DBS, including in technology, mechanistic understanding, and applications have the potential to expand access and use of DBS, while also improving clinical outcomes. Developments in DBS technology, such as MRI compatibility and bidirectional DBS systems capable of sensing neural activity while providing therapeutic stimulation, have enabled advances in our understanding of DBS mechanisms and its application. In this review, we summarize recent work exploring DBS modulation of target networks. We also cover current work focusing on improved programming and the development of novel stimulation paradigms that go beyond current standards of DBS, many of which are enabled by sensing-enabled DBS systems and have the potential to expand access to DBS.


Assuntos
Estimulação Encefálica Profunda , Encéfalo/fisiologia , Estimulação Elétrica , Imageamento por Ressonância Magnética , Eletrodos
8.
Brain Stimul ; 16(3): 793-797, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37100201

RESUMO

BACKGROUND: Deep brain stimulation (DBS) devices with neural recording capabilities are commercially available and may potentially improve clinical care and advance research. However, tools, to visualize neural recording data have been limited. These tools in general, require custom-made software for processing and analysis. The development of new tools will be critical for clinicians and researchers to fully leverage the latest device capabilities. OBJECTIVE: There is an urgent need for a user-friendly tool for in-depth visualization and analysis of brain signals and of DBS data. METHODS AND RESULTS: The Brain Recording Analysis and Visualization Online (BRAVO) platform was developed to easily import, visualize, and analyze brain signals. This Python-based web interface has been designed and implemented on a Linux server. The tool processes the session files from DBS programming generated by a clinical 'programming' tablet. The platform is capable of parsing and organizing neural recordings for longitudinal analysis. We present the platform and cases exemplifying its application and use. CONCLUSION: The BRAVO platform is an accessible easy-to-use, open-source web interface for clinicians and researchers to apply for analysis of longitudinal neural recording data. The tool can be used for both clinical and research applications.


Assuntos
Estimulação Encefálica Profunda , Estimulação Encefálica Profunda/métodos , Software , Encéfalo/fisiologia , Neuroimagem
9.
Brain Commun ; 5(2): fcad025, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36895960

RESUMO

Globus pallidus internus deep brain stimulation is an established therapy for patients with medication-refractory Parkinson's disease. Clinical outcomes are highly dependent on applying stimulation to precise locations in the brain. However, robust neurophysiological markers are needed to determine the optimal electrode location and to guide postoperative stimulation parameter selection. In this study, we evaluated evoked resonant neural activity in the pallidum as a potential intraoperative marker to optimize targeting and stimulation parameter selection to improve outcomes of deep brain stimulation for Parkinson's disease. Intraoperative local field potential recordings were acquired in 22 patients with Parkinson's disease undergoing globus pallidus internus deep brain stimulation implantation (N = 27 hemispheres). A control group of patients undergoing implantation in the subthalamic nucleus (N = 4 hemispheres) for Parkinson's disease or the thalamus for essential tremor (N = 9 patients) were included for comparison. High-frequency (135 Hz) stimulation was delivered from each electrode contact sequentially while recording the evoked response from the other contacts. Low-frequency stimulation (10 Hz) was also applied as a comparison. Evoked resonant neural activity features, including amplitude, frequency and localization were measured and analysed for correlation with empirically derived postoperative therapeutic stimulation parameters. Pallidal evoked resonant neural activity elicited by stimulation in the globus pallidus internus or externus was detected in 26 of 27 hemispheres and varied across hemispheres and across stimulating contacts within individual hemispheres. Bursts of high-frequency stimulation elicited evoked resonant neural activity with similar amplitudes (P = 0.9) but a higher frequency (P = 0.009) and a higher number of peaks (P = 0.004) than low-frequency stimulation. We identified a 'hotspot' in the postero-dorsal pallidum where stimulation elicited higher evoked resonant neural activity amplitudes (P < 0.001). In 69.6% of hemispheres, the contact that elicited the maximum amplitude intraoperatively matched the contact empirically selected for chronic therapeutic stimulation by an expert clinician after 4 months of programming sessions. Pallidal and subthalamic nucleus evoked resonant neural activity were similar except for lower pallidal amplitudes. No evoked resonant neural activity was detected in the essential tremor control group. Given its spatial topography and correlation with postoperative stimulation parameters empirically selected by expert clinicians, pallidal evoked resonant neural activity shows promise as a potential marker to guide intraoperative targeting and to assist the clinician with postoperative stimulation programming. Importantly, evoked resonant neural activity may also have the potential to guide directional and closed-loop deep brain stimulation programming for Parkinson's disease.

11.
Lancet Neurol ; 22(2): 147-158, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36354027

RESUMO

Tourette syndrome is a chronic neurodevelopmental disorder characterised by motor and phonic tics that can substantially diminish the quality of life of affected individuals. Evaluating and treating Tourette syndrome is complex, in part due to the heterogeneity of symptoms and comorbidities between individuals. The underlying pathophysiology of Tourette syndrome is not fully understood, but recent research in the past 5 years has brought new insights into the genetic variations and the alterations in neurophysiology and brain networks contributing to its pathogenesis. Treatment options for Tourette syndrome are expanding with novel pharmacological therapies and increased use of deep brain stimulation for patients with symptoms that are refractory to pharmacological or behavioural treatments. Potential predictors of patient responses to therapies for Tourette syndrome, such as specific networks modulated during deep brain stimulation, can guide clinical decisions. Multicentre data sharing initiatives have enabled several advances in our understanding of the genetics and pathophysiology of Tourette syndrome and will be crucial for future large-scale research and in refining effective treatments.


Assuntos
Tiques , Síndrome de Tourette , Humanos , Síndrome de Tourette/diagnóstico , Síndrome de Tourette/genética , Síndrome de Tourette/terapia , Qualidade de Vida , Tiques/diagnóstico , Resultado do Tratamento , Encéfalo/patologia
12.
Epilepsia ; 63(8): 2037-2055, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35560062

RESUMO

OBJECTIVE: Responsive neurostimulation is an effective therapy for patients with refractory mesial temporal lobe epilepsy. However, clinical outcomes are variable, few patients become seizure-free, and the optimal stimulation location is currently undefined. The aim of this study was to quantify responsive neurostimulation in the mesial temporal lobe, identify stimulation-dependent networks associated with seizure reduction, and determine if stimulation location or stimulation-dependent networks inform outcomes. METHODS: We modeled patient-specific volumes of tissue activated and created probabilistic stimulation maps of local regions of stimulation across a retrospective cohort of 22 patients with mesial temporal lobe epilepsy. We then mapped the network stimulation effects by seeding tractography from the volume of tissue activated with both patient-specific and normative diffusion-weighted imaging. We identified networks associated with seizure reduction across patients using the patient-specific tractography maps and then predicted seizure reduction across the cohort. RESULTS: Patient-specific stimulation-dependent connectivity was correlated with responsive neurostimulation effectiveness after cross-validation (p = .03); however, normative connectivity derived from healthy subjects was not (p = .44). Increased connectivity from the volume of tissue activated to the medial prefrontal cortex, cingulate cortex, and precuneus was associated with greater seizure reduction. SIGNIFICANCE: Overall, our results suggest that the therapeutic effect of responsive neurostimulation may be mediated by specific networks connected to the volume of tissue activated. In addition, patient-specific tractography was required to identify structural networks correlated with outcomes. It is therefore likely that altered connectivity in patients with epilepsy may be associated with the therapeutic effect and that utilizing patient-specific imaging could be important for future studies. The structural networks identified here may be utilized to target stimulation in the mesial temporal lobe and to improve seizure reduction for patients treated with responsive neurostimulation.


Assuntos
Epilepsia do Lobo Temporal , Epilepsia , Epilepsia/terapia , Epilepsia do Lobo Temporal/diagnóstico por imagem , Epilepsia do Lobo Temporal/terapia , Giro do Cíngulo , Humanos , Imageamento por Ressonância Magnética , Estudos Retrospectivos , Lobo Temporal
13.
Front Neurol ; 13: 825178, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35356461

RESUMO

Deep brain stimulation (DBS) has advanced treatment options for a variety of neurologic and neuropsychiatric conditions. As the technology for DBS continues to progress, treatment efficacy will continue to improve and disease indications will expand. Hardware advances such as longer-lasting batteries will reduce the frequency of battery replacement and segmented leads will facilitate improvements in the effectiveness of stimulation and have the potential to minimize stimulation side effects. Targeting advances such as specialized imaging sequences and "connectomics" will facilitate improved accuracy for lead positioning and trajectory planning. Software advances such as closed-loop stimulation and remote programming will enable DBS to be a more personalized and accessible technology. The future of DBS continues to be promising and holds the potential to further improve quality of life. In this review we will address the past, present and future of DBS.

15.
Front Hum Neurosci ; 15: 749567, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34566612

RESUMO

Pallidal deep brain stimulation (DBS) is an increasingly used therapy for Parkinson's disease (PD). Here, we study the effect of DBS on pallidal oscillatory activity as well as on symptom severity in an individual with PD implanted with a new pulse generator (Medtronic Percept system) which facilitates chronic recording of local field potentials (LFP) through implanted DBS lead. Pallidal LFPs were recorded while delivering stimulation in a monopolar configuration using stepwise increments (0.5 mA, every 20 s). At each stimulation amplitude, the power spectral density (PSD) was computed, and beta power (13-30 Hz) was calculated and correlated with the degree of bradykinesia. Pallidal beta power was reduced when therapeutic stimulation was delivered. Beta power correlated to the severity of bradykinesia. Worsening of parkinsonism when excessive stimulation was applied was associated with a rebound in the beta band power. These preliminary results suggest that pallidal beta power might be used as an objective marker of the disease state in PD. The use of brain sensing from implanted neural interfaces may in the future facilitate clinical programming. Detection of rebound could help to optimize benefits and minimize worsening from overstimulation.

16.
Biol Psychiatry ; 90(10): 678-688, 2021 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-34482949

RESUMO

Obsessive-compulsive disorder is among the most disabling psychiatric disorders. Although deep brain stimulation is considered an effective treatment, its use in clinical practice is not fully established. This is, at least in part, due to ambiguity about the best suited target and insufficient knowledge about underlying mechanisms. Recent advances suggest that changes in broader brain networks are responsible for improvement of obsessions and compulsions, rather than local impact at the stimulation site. These findings were fueled by innovative methodological approaches using brain connectivity analyses in combination with neuromodulatory interventions. Such a connectomic approach for neuromodulation constitutes an integrative account that aims to characterize optimal target networks. In this critical review, we integrate findings from connectomic studies and deep brain stimulation interventions to characterize a neural network presumably effective in reducing obsessions and compulsions. To this end, we scrutinize methodologies and seemingly conflicting findings with the aim to merge observations to identify common and diverse pathways for treating obsessive-compulsive disorder. Ultimately, we propose a unified network that-when modulated by means of cortical or subcortical interventions-alleviates obsessive-compulsive symptoms.


Assuntos
Conectoma , Estimulação Encefálica Profunda , Transtorno Obsessivo-Compulsivo , Encéfalo/diagnóstico por imagem , Humanos , Transtorno Obsessivo-Compulsivo/terapia , Resultado do Tratamento
17.
Front Hum Neurosci ; 15: 644593, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33953663

RESUMO

We estimate that 208,000 deep brain stimulation (DBS) devices have been implanted to address neurological and neuropsychiatric disorders worldwide. DBS Think Tank presenters pooled data and determined that DBS expanded in its scope and has been applied to multiple brain disorders in an effort to modulate neural circuitry. The DBS Think Tank was founded in 2012 providing a space where clinicians, engineers, researchers from industry and academia discuss current and emerging DBS technologies and logistical and ethical issues facing the field. The emphasis is on cutting edge research and collaboration aimed to advance the DBS field. The Eighth Annual DBS Think Tank was held virtually on September 1 and 2, 2020 (Zoom Video Communications) due to restrictions related to the COVID-19 pandemic. The meeting focused on advances in: (1) optogenetics as a tool for comprehending neurobiology of diseases and on optogenetically-inspired DBS, (2) cutting edge of emerging DBS technologies, (3) ethical issues affecting DBS research and access to care, (4) neuromodulatory approaches for depression, (5) advancing novel hardware, software and imaging methodologies, (6) use of neurophysiological signals in adaptive neurostimulation, and (7) use of more advanced technologies to improve DBS clinical outcomes. There were 178 attendees who participated in a DBS Think Tank survey, which revealed the expansion of DBS into several indications such as obesity, post-traumatic stress disorder, addiction and Alzheimer's disease. This proceedings summarizes the advances discussed at the Eighth Annual DBS Think Tank.

18.
Artigo em Inglês | MEDLINE | ID: mdl-33536144

RESUMO

BACKGROUND: Deep brain stimulation (DBS) targeting the globus pallidus internus (GPi) can improve tics and comorbid obsessive-compulsive behavior (OCB) in patients with treatment-refractory Tourette syndrome (TS). However, some patients' symptoms remain unresponsive, the stimulation applied across patients is variable, and the mechanisms underlying improvement are unclear. Identifying the fiber pathways surrounding the GPi that are associated with improvement could provide mechanistic insight and refine targeting strategies to improve outcomes. METHODS: Retrospective data were collected for 35 patients who underwent bilateral GPi DBS for TS. Computational models of fiber tract activation were constructed using patient-specific lead locations and stimulation settings to evaluate the effects of DBS on basal ganglia pathways and the internal capsule. We first evaluated the relationship between activation of individual pathways and symptom improvement. Next, linear mixed-effects models with combinations of pathways and clinical variables were compared in order to identify the best-fit predictive models of tic and OCB improvement. RESULTS: The best-fit model of tic improvement included baseline severity and the associative pallido-subthalamic pathway. The best-fit model of OCB improvement included baseline severity and the sensorimotor pallido-subthalamic pathway, with substantial evidence also supporting the involvement of the prefrontal, motor, and premotor internal capsule pathways. The best-fit models of tic and OCB improvement predicted outcomes across the cohort and in cross-validation. CONCLUSIONS: Differences in fiber pathway activation likely contribute to variable outcomes of DBS for TS. Computational models of pathway activation could be used to develop novel approaches for preoperative targeting and selecting stimulation parameters to improve patient outcomes.


Assuntos
Estimulação Encefálica Profunda , Síndrome de Tourette , Globo Pálido , Humanos , Estudos Retrospectivos , Síndrome de Tourette/terapia , Resultado do Tratamento
19.
Brain ; 143(8): 2607-2623, 2020 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-32653920

RESUMO

Deep brain stimulation may be an effective therapy for select cases of severe, treatment-refractory Tourette syndrome; however, patient responses are variable, and there are no reliable methods to predict clinical outcomes. The objectives of this retrospective study were to identify the stimulation-dependent structural networks associated with improvements in tics and comorbid obsessive-compulsive behaviour, compare the networks across surgical targets, and determine if connectivity could be used to predict clinical outcomes. Volumes of tissue activated for a large multisite cohort of patients (n = 66) implanted bilaterally in globus pallidus internus (n = 34) or centromedial thalamus (n = 32) were used to generate probabilistic tractography to form a normative structural connectome. The tractography maps were used to identify networks that were correlated with improvement in tics or comorbid obsessive-compulsive behaviour and to predict clinical outcomes across the cohort. The correlated networks were then used to generate 'reverse' tractography to parcellate the total volume of stimulation across all patients to identify local regions to target or avoid. The results showed that for globus pallidus internus, connectivity to limbic networks, associative networks, caudate, thalamus, and cerebellum was positively correlated with improvement in tics; the model predicted clinical improvement scores (P = 0.003) and was robust to cross-validation. Regions near the anteromedial pallidum exhibited higher connectivity to the positively correlated networks than posteroventral pallidum, and volume of tissue activated overlap with this map was significantly correlated with tic improvement (P < 0.017). For centromedial thalamus, connectivity to sensorimotor networks, parietal-temporal-occipital networks, putamen, and cerebellum was positively correlated with tic improvement; the model predicted clinical improvement scores (P = 0.012) and was robust to cross-validation. Regions in the anterior/lateral centromedial thalamus exhibited higher connectivity to the positively correlated networks, but volume of tissue activated overlap with this map did not predict improvement (P > 0.23). For obsessive-compulsive behaviour, both targets showed that connectivity to the prefrontal cortex, orbitofrontal cortex, and cingulate cortex was positively correlated with improvement; however, only the centromedial thalamus maps predicted clinical outcomes across the cohort (P = 0.034), but the model was not robust to cross-validation. Collectively, the results demonstrate that the structural connectivity of the site of stimulation are likely important for mediating symptom improvement, and the networks involved in tic improvement may differ across surgical targets. These networks provide important insight on potential mechanisms and could be used to guide lead placement and stimulation parameter selection, as well as refine targets for neuromodulation therapies for Tourette syndrome.


Assuntos
Encéfalo/fisiopatologia , Estimulação Encefálica Profunda/métodos , Rede Nervosa/fisiopatologia , Síndrome de Tourette/terapia , Adulto , Encéfalo/diagnóstico por imagem , Imagem de Tensor de Difusão , Feminino , Humanos , Interpretação de Imagem Assistida por Computador , Masculino , Pessoa de Meia-Idade , Rede Nervosa/diagnóstico por imagem , Estudos Retrospectivos , Síndrome de Tourette/diagnóstico por imagem , Síndrome de Tourette/fisiopatologia , Resultado do Tratamento
20.
Brain Stimul ; 13(4): 1094-1101, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32417668

RESUMO

BACKGROUND: Deep brain stimulation (DBS) of subcallosal cingulate cortex (SCC) is a promising investigational therapy for treatment-resistant depression (TRD). However, outcomes vary, likely due to suboptimal DBS placement. Ideal placement is proposed to stimulate 4 SCC white matter bundles; however, no quantitative data have linked activation of these target tracts to response. OBJECTIVE: Here we used the volume of tissue activated (VTA) and probabilistic diffusion tensor imaging (DTI) to quantify tract activation relating to response. METHODS: DTI was performed in 19 TRD patients who received SCC-DBS. We defined clinical response as >48% reduction from baseline in the Hamilton Depression Rating Scale. Bilateral VTAs were generated based on subject-specific stimulation parameters. Patient-specific tract maps emanating from the VTAs were calculated using whole-brain probabilistic DTI. The four target tracts were isolated using tract-specific quantification and examined for overlap with DBS activated tissue. RESULTS: Medial frontal and temporal projections were stimulated in all responders at 6 and 12 months. Individual tract-based generalized linear mixed model analysis revealed a significant tract-by-response interaction at both 6 (F(1,135) = 3.828, p = 0.001) and 12 (F(1,135) = 5.688, p < 0.001) months, with post hoc tests revealing a response-related increase in cingulum activation at 6 months (t(135) = 2.418, p = 0.017) and decrease in forceps minor activation at 12 months (t(135) = -2.802, p = 0.006). CONCLUSIONS: A wider profile of white matter tracts, particularly to the medial frontal, was associated with DBS response. Cingulum bundle stimulation may promote early response and excess stimulation of the forceps minor might be detrimental. Our work supports prospective patient-specific targeting to inform personalized DBS.


Assuntos
Conectoma , Estimulação Encefálica Profunda/métodos , Transtorno Depressivo Resistente a Tratamento/terapia , Modelagem Computacional Específica para o Paciente , Adulto , Corpo Caloso/diagnóstico por imagem , Corpo Caloso/fisiopatologia , Imagem de Tensor de Difusão , Feminino , Giro do Cíngulo/diagnóstico por imagem , Giro do Cíngulo/fisiopatologia , Humanos , Masculino , Pessoa de Meia-Idade , Modelos Neurológicos , Substância Branca/diagnóstico por imagem , Substância Branca/fisiopatologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA