Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Environ Qual ; 2024 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-39072835

RESUMO

While mining provides valuable metals and minerals to meet societal demands, it can cause environmental contamination from the residuals (i.e., tailings) of mining. Tailings are often acidic, laden with heavy metals, and lacking adequate nutrients and physical conditions for plant growth, precluding the establishment of plant cover to reduce the offsite movement of mining wastes. This paper describes a case study at the Formosa Mine in Douglas County, Oregon, where tailings were amended with a mixture of lime, biosolids, biochar, and microbial inoculum to facilitate establishment of Douglas-fir (Pseudotsuga menziesii [Mirbel] Franco) seedlings. Results show that the tailings pH increased, and Douglas-fir seedlings survived and grew with these amendments. After 2 years, pH did, however, decrease in some downslope locations and was associated with an increase in tree mortality. This suggests that tailings conditions should be monitored, and amendments should be reapplied as needed, particularly in areas receiving acidic runoff from unamended upslope tailings, until the seedlings are fully established. This study not only provides a prescription for the addition of biochar and other amendments to enhance plant growth for revegetation purposes in low-pH, metal-contaminated mine tailings, but it also demonstrates a method that can be used to address similar problems at other mine sites.

2.
Sci Rep ; 14(1): 10231, 2024 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-38702407

RESUMO

Agricultural soils are increasingly undergoing inadvertent and purposeful exposures to engineered CeO2 nanoparticles (NPs), which can impact crops and root-associated microbial communities. However, interactions between NP concentration and exposure duration on plant-mediated responses of root-associated bacterial communities are not well understood. Soybeans seedlings were grown in soil with uncoated NPs added at concentrations of 0, 1 or 100 mg kg-1. Total soil exposure durations were either 190 days, starting 106 days before planting or 84 days with NP amendments coinciding with planting. We assessed plant development, bacterial diversity, differential abundance and inferred functional changes across rhizosphere, rhizoplane, and root tissue compartments. Plant non-monotonic dose responses were mirrored in bacterial communities. Most notably, effects were magnified in the rhizoplane under low-dose, short-exposures. Enriched metabolic pathways were primarily related to biosynthesis and degradation/utilization/assimilation, rather than responses to metals or oxidative stress. Our results indicate that plant-mediated bacterial responses were greater than direct NP impacts. Also, we identify needs for modeling non-monotonic legume stress responses that account for coinfection with mutualistic and parasitic bacteroids. Our findings provide new insights regarding effects of applications of soil amendments such as biosolids containing NPs or nano-enabled formulations used in cultivation of legumes and other crops.


Assuntos
Bactérias , Cério , Glycine max , Nanopartículas , Raízes de Plantas , Rizosfera , Microbiologia do Solo , Glycine max/crescimento & desenvolvimento , Glycine max/efeitos dos fármacos , Glycine max/microbiologia , Raízes de Plantas/microbiologia , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/crescimento & desenvolvimento , Bactérias/efeitos dos fármacos , Microbiota/efeitos dos fármacos , Solo/química
3.
Chemosphere ; 347: 140688, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37977530

RESUMO

Common isotherm and kinetic models cannot describe the pH-dependent sorption of heavy metal cations by biochar. In this paper, we evaluated a pH-dependent, equilibrium/kinetic model for describing the sorption of cadmium (Cd), copper (Cu), nickel (Ni), lead (Pb), and zinc (Zn) by poultry litter-derived biochar (PLB). We performed sorption experiments across a range of solution pH, initial metal concentration, and reaction time. The sorption of all five metals increased with increasing pH. For Cd, Cu, and Pb, kinetics experiments demonstrated that sorption rates were greater at pH 6.5 than at pH 4.5. For each metal, all sorption data were described using single set of four adjustable parameters. Sorption edge and isotherm data were well described with R2 > 0.93 in all cases. Time-dependent sorption was well described (R2 ≥ 0.90) for all metals except Pb (R2 = 0.77). We then used the best-fit model parameters to calculate linear distribution coefficients (KD) and equilibration times as a function of pH and initial solution concentration. These calculations provide a more robust way of characterizing biochar affinity for metal cations than Freundlich distribution coefficients or Langmuir sorption capacity. Because this model can characterize metal cation sorption by biochar across a wider range of reaction conditions than traditional isotherm or kinetic models, it is better suited for estimating metal cation/biochar interactions in engineered or natural systems.


Assuntos
Cádmio , Metais Pesados , Animais , Aves Domésticas , Chumbo , Concentração de Íons de Hidrogênio , Adsorção , Metais Pesados/química , Cátions , Cinética
4.
Biochar ; 5(64): 1-14, 2023 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-38269399

RESUMO

Biochars with a high affinity for phosphorus (P) are promising soil amendments for reducing P in agricultural run-off. Poultry litter (PL) is an abundant biochar feedstock. However, PL-derived biochars are typically high in soluble P and therefore require chemical modification to become effective P sorbents. This study investigated the effect of magnesium (Mg) activation on extractable P (EP) and P sorption capacities of PL-derived biochars. Biochar was produced at 500-900 °C from PL activated with 0-1 M Mg. Three differentially aged PL feedstocks were evaluated (1-, 3-5-, and 7-9-year-old). Increased Mg activation level and pyrolysis temperature both resulted in EP reductions from the biochars. Specifically, biochars produced at temperatures ≥ 700 °C from PL activated with ≥ 0.25 M Mg had negligible EP. X-ray diffractograms indicated that increased Mg loading favored the formation of stable Mg3(PO4)2 phases while increasing temperature favored the formation of both Mg3(PO4)2 and Ca5(PO4)3OH. Maximum P sorption capacities (Pmax) of the biochars were estimated by fitting Langmuir isotherms to batch sorption data and ranged from 0.66-10.35 mg g-1. Average Pmax values were not affected by PL age or pyrolysis temperature; however, biochars produced from 1 M Mg-activated PL did have significantly higher average Pmax values (p < 0.05), likely due to a greater abundance of MgO. Overall, the results demonstrated that Mg activation is an effective strategy for producing PL-derived biochars with the potential ability to reduce P loading into environmentally sensitive ecosystems.

5.
Agrosyst Geosci Environ ; 6(3): 1-18, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38268614

RESUMO

To provide recommendations for establishment of plants on low-pH Formosa Mine tailings, two greenhouse experiments were conducted to evaluate the use of remedial amendments to improve the survival and growth of Douglas fir (Pseudotsuga menziesii) seedlings. A preliminary experiment indicated that 1% lime (by weight) raised tailings pH, permitting seedling survival. However, high rates of biosolid application (BS; 2% by weight) added to supply nutrients were phytotoxic when added with lime. A gasified conifer biochar (BC) added to tailings at 1%, 2.5%, or 5% (by weight), along with lime and BS, caused an additional increase in pH, decreased electrical conductivity (EC), and tended to increase the survival of Douglas fir. The addition of a locally sourced microbial inoculum (LSM) did not affect survival. A subsequent experiment expanded our experimental design by testing multiple levels of amendments that included lime (0.5% and 1% by weight), three application rates (0.2%, 0.5%, and 2%) of two nutrient sources (BS or mineral fertilizer), BC (0% and 2.5%), and with or without LSM. There were many interactions among amendments. In general, Douglas fir survival was enhanced when lime and BC were added. These experiments suggest that amending with lime, a nutrient source, and BC would enhance revegetation on low-pH, metal-contaminated mine tailings.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA