Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
Phys Med ; 125: 104508, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39186892

RESUMO

PURPOSE: This study aims to elucidate the dependence of the flat-panel detector's response on the linear energy transfer (LET) and evaluate the practical viability of employing flat-panel detectors in proton dosimetry applications through LET-dependent correction factors. METHODS: The study assessed the flat-panel detector's response across varying depths using solid water and distinct 100, 150, and 200 MeV proton beams by comparing the flat-panel readings against reference doses measured with an ionization chamber. A Monte Carlo code was used to derive LET values, and an LET-dependent response correction factor was determined based on the ratio of the uncorrected flat-panel dose to the ionization chamber dose. The implications of this under-response correction were validated by applying it to a measurement involving a spread-out Bragg peak (SOBP), followed by a comparative analysis against doses calculated using the Monte Carlo code and MatriXX ONE measurement. RESULTS: The association between LET and the flat-panel detector's under-response displayed a positive correlation that intensified with increasing LET values. Notably, with a 10 keV/µm LET value, the detector's under-response reached 50 %, while the measurement points in the SOBP demonstrated under-response greater than 20 %. However, post-correction, the adjusted flat-panel profile closely aligned with the Monte Carlo profile, yielding a 2-dimensional 3 %/3mm gamma passing rate of 100 % at various verification depths. CONCLUSION: This study successfully defined the link between LET and the responsiveness of flat-panel detectors for proton dosimetric measurements and established a foundational framework for integrating flat-panel detectors in clinical proton dosimetry applications.


Assuntos
Transferência Linear de Energia , Método de Monte Carlo , Terapia com Prótons , Radiometria , Terapia com Prótons/instrumentação , Radiometria/instrumentação , Dosagem Radioterapêutica
2.
Int J Part Ther ; 13: 100112, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39105198

RESUMO

This case study explores the strategic decision-making and safety considerations in managing a unique scenario where a pacemaker dependent patient, requiring adjuvant radiotherapy for bilateral breast cancer. The conventional pacemaker was located entirely within the treatment target, without the option for transposition because of the bilateral chest treatment, resulting in significant risk of malfunction caused by exposing it to the full prescribed dose. Consequently, the decision was made to replace the conventional pacemaker with a leadless device Micra implanted directly into the heart to mitigate direct device radiation and potential adverse effects of proton therapy on the cardiac device. Following Micra implantation, the patient underwent the proton treatment without complications or serious device malfunctions. This study explores solutions to address the challenges posed by within-the-field cardiac devices and highlights the use of pencil beam proton therapy for individuals with leadless cardiac devices while acknowledging the potential for neutron production and the associated risk of single-event upsets (SEU) in cardiac implantable electronic devices (CIEDs). The findings underscore the significance of strategic decision-making, risk assessment, and continuous monitoring for successful outcomes, particularly in the context of proton therapy for patients with advanced cardiac considerations.

3.
Aesthet Surg J Open Forum ; 6: ojae047, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39006064

RESUMO

Background: The driving force for many seeking plastic surgery is comfort in one's body. Along with comfort come satisfaction, improved self-awareness, and potential change in interoceptive awareness-a term defined as the conscious perception of one's body. Although conscious perception of bodily signals is influenced by many factors, sense of self and body image play significant roles. Studies show diminished interoceptive awareness in those with negative body image, but no research has assessed the impact of change in body image on interoceptive awareness. Objectives: The purpose of this study is to investigate how interoceptive awareness changes following elective breast surgery. Methods: The Multidimensional Assessment of Interoceptive Awareness Version 2 (MAIA-2) was administered to females undergoing breast surgery. A baseline survey was administered preoperatively, with follow-up surveys at 1 week, 1 month, and 3 months postoperatively. Results: Data were collected from 39 females and analyzed using paired t-tests to compare MAIA-2 overall and subscores over time. Significance was seen at 1 week for subcategories of "not distracting" and "trust," at 1 month for "trust," and 3 months for "not worrying," "emotional awareness," "self-regulation," and "trust." Overall survey averages were significantly increased at all postoperative intervals. Conclusions: From this study, it can be concluded that breast surgery positively impacts interoceptive awareness. These findings are clinically relevant as they offer providers' insight into the psychological effects of breast procedures. A comprehensive understanding of procedure outcomes enables providers to educate patients on both anticipated physical results and changes in sense of self.

4.
Radiother Oncol ; 199: 110421, 2024 10.
Artigo em Inglês | MEDLINE | ID: mdl-38997093

RESUMO

BACKGROUND AND PURPOSE: Compared to intensity modulated proton therapy (IMPT), proton arc therapy (PAT) is expected to improve dose conformality, delivery efficiency, and provide a more favorable LET distribution. Alternatively, the low-dose bath is potentially spread over larger volumes, which could impact the likelihood of developing a radiation-induced, secondary cancer (SC). The goal of this study was to evaluate this risk in several anatomical sites using newly developed commercial tools. MATERIALS AND METHODS: Treatment plans encompassing six anatomical sites, five patients per site, and three techniques per patient were created using RayStation. Techniques included PAT and IMPT for protons, and either volumetrically modulated radiotherapy (VMAT) or intensity modulated radiotherapy (IMRT) for photons. Risk estimates were based on the organ-equivalent dose (OED) concept using both Schneider's mechanistic dose-response model for carcinoma induction and a linear dose-response model. RESULTS: With few exceptions, mean and integral dose were lowest with PAT. For protons, the factor OEDIMPT/OEDPAT ranged from 0.7 to 1.8 with both the mechanistic and linear model, while for photons OEDphoton/OEDPAT ranged from 1.5 to 10 using the mechanistic model and 1.3 to using the linear model. A strong correlation was found between mean dose and OED for organs with significant repopulation/repair (high R value) and less cell death from single hit interactions (low α value). CONCLUSION: Based on results from both mechanistic and linear risk models, the transition from IMPT to PAT should not substantially affect SC risk in patients treated with proton therapy. Additionally, when using Schneider's model, the shapes of the dose-response curves can be used as a good predictor of how SC risk will respond to shifts from intermediate dose to low dose as anticipated when moving from IMPT to PAT.


Assuntos
Terapia com Prótons , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador , Radioterapia de Intensidade Modulada , Humanos , Radioterapia de Intensidade Modulada/métodos , Radioterapia de Intensidade Modulada/efeitos adversos , Terapia com Prótons/métodos , Planejamento da Radioterapia Assistida por Computador/métodos , Neoplasias Induzidas por Radiação/etiologia , Masculino , Órgãos em Risco/efeitos da radiação , Feminino , Segunda Neoplasia Primária/etiologia , Segunda Neoplasia Primária/radioterapia , Neoplasias da Próstata/radioterapia , Neoplasias da Próstata/patologia , Neoplasias de Cabeça e Pescoço/radioterapia , Neoplasias da Mama/radioterapia , Neoplasias da Mama/patologia , Neoplasias Pulmonares/radioterapia , Neoplasias Pulmonares/patologia
5.
Med Phys ; 51(5): 3165-3172, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38588484

RESUMO

BACKGROUND: Simulated error training is a method to practice error detection in situations where the occurrence of error is low. Such is the case for the physics plan and chart review where a physicist may check several plans before encountering a significant problem. By simulating potentially hazardous errors, physicists can become familiar with how they manifest and learn from mistakes made during a simulated plan review. PURPOSE: The purpose of this project was to develop a series of training datasets that allows medical physicists and trainees to practice plan and chart reviews in a way that is familiar and accessible, and to provide exposure to the various failure modes (FMs) encountered in clinical scenarios. METHODS: A series of training datasets have been developed that include a variety of embedded errors based on the risk-assessment performed by American Association of Physicists in Medicine (AAPM) Task Group 275 for the physics plan and chart review. The training datasets comprise documentation, screen shots, and digital content derived from common treatment planning and radiation oncology information systems and are available via the Cloud-based platform ProKnow. RESULTS: Overall, 20 datasets have been created incorporating various software systems (Mosaiq, ARIA, Eclipse, RayStation, Pinnacle) and delivery techniques. A total of 110 errors representing 50 different FMs were embedded with the 20 datasets. The project was piloted at the 2021 AAPM Annual Meeting in a workshop where participants had the opportunity to review cases and answer survey questions related to errors they detected and their perception of the project's efficacy. In general, attendees detected higher-priority FMs at a higher rate, though no correlation was found between detection rate and the detectability of the FMs. Familiarity with a given system appeared to play a role in detecting errors, specifically when related to missing information at different locations within a given software system. Overall, 96% of respondents either agreed or strongly agreed that the ProKnow portal and training datasets were effective as a training tool, and 75% of respondents agreed or strongly agreed that they planned to use the tool at their local institution. CONCLUSIONS: The datasets and digital platform provide a standardized and accessible tool for training, performance assessment, and continuing education regarding the physics plan and chart review. Work is ongoing to expand the project to include more modalities, radiation oncology treatment planning and information systems, and FMs based on emerging techniques such as auto-contouring and auto-planning.


Assuntos
Planejamento da Radioterapia Assistida por Computador , Planejamento da Radioterapia Assistida por Computador/métodos , Física Médica/educação , Humanos , Erros Médicos/prevenção & controle
6.
Cancers (Basel) ; 16(4)2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38398171

RESUMO

PURPOSE: To demonstrate the feasibility of improving prostate cancer patient outcomes with PBS proton LETd optimization. METHODS: SFO, IPT-SIB, and LET-optimized plans were created for 12 patients, and generalized-tissue and disease-specific LET-dependent RBE models were applied. The mean LETd in several structures was determined and used to calculate mean RBEs. LETd- and dose-volume histograms (LVHs/DVHs) are shown. TODRs were defined based on clinical dose goals and compared between plans. The impact of robust perturbations on LETd, TODRs, and DVH spread was evaluated. RESULTS: LETd optimization achieved statistically significant increased target volume LETd of ~4 keV/µm compared to SFO and IPT-SIB LETd of ~2 keV/µm while mitigating OAR LETd increases. A disease-specific RBE model predicted target volume RBEs > 1.5 for LET-optimized plans, up to 18% higher than for SFO plans. LET-optimized target LVHs/DVHs showed a large increase not present in OARs. All RBE models showed a statistically significant increase in TODRs from SFO to IPT-SIB to LET-optimized plans. RBE = 1.1 does not accurately represent TODRs when using LETd optimization. Robust evaluations demonstrated a trade-off between increased mean target LETd and decreased DVH spread. CONCLUSION: The demonstration of improved TODRs provided via LETd optimization shows potential for improved patient outcomes.

7.
Cancers (Basel) ; 15(15)2023 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-37568697

RESUMO

PURPOSE: To investigate the feasibility of using cone-beam computed tomography (CBCT)-derived synthetic CTs to monitor the daily dose and trigger a plan review for adaptive proton therapy (APT) in head and neck cancer (HNC) patients. METHODS: For 84 HNC patients treated with proton pencil-beam scanning (PBS), same-day CBCT and verification CT (vfCT) pairs were retrospectively collected. The ground truth CT (gtCT) was created by deforming the vfCT to the same-day CBCT, and it was then used as a dosimetric baseline and for establishing plan review trigger recommendations. Two different synthetic CT algorithms were tested; the corrected CBCT (corrCBCT) was created using an iterative image correction method and the virtual CT (virtCT) was created by deforming the planning CT to the CBCT, followed by a low-density masking process. Clinical treatment plans were recalculated on the image sets for evaluation. RESULTS: Plan review trigger criteria for adaptive therapy were established after closely reviewing the cohort data. Compared to the vfCT, the corrCBCT and virtCT reliably produced dosimetric data more similar to the gtCT. The average discrepancy in D99 for high-risk clinical target volumes (CTV) was 1.1%, 0.7%, and 0.4% and for standard-risk CTVs was 1.8%, 0.5%, and 0.5% for the vfCT, corrCBCT, and virtCT, respectively. CONCLUSION: Streamlined APT has been achieved with the proposed plan review criteria and CBCT-based synthetic CT workflow.

8.
Plast Reconstr Surg Glob Open ; 11(8): e5130, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37534110

RESUMO

Immediate expander/implant-based breast reconstruction after mastectomy has become more sought after by patients. Although many patients choose this technique due to good aesthetic outcomes, lack of donor site morbidity, and shorter procedure times, it is not without complications. The most reported complications include seroma, infection, hematoma, mastectomy flap necrosis, wound dehiscence, and implant exposure, with an overall complication rate as high as 45%. Closed incision negative pressure therapy (ciNPT) has shown value in wound healing and reducing complications; however, the current literature is inconclusive. We aimed to examine if ciNPT improves outcomes for patients receiving this implant-based reconstruction. Methods: This is a retrospective single-institution study evaluating the ciNPT device, 3M Prevena Restor BellaForm, on breast reconstruction patients. The study was performed between July 1, 2019 and October 30, 2020, with 125 patients (232 breasts). Seventy-seven patients (142 breasts) did not receive the ciNPT dressing, and 48 patients (90 breasts) received the ciNPT dressing. Primary outcomes were categorized by major or minor complications. Age, BMI, and final drain removal were summarized using medians and quartiles, and were compared with nonparametric Mann-Whitney test. Categorical variables were compared using chi-square or Fisher exact test. Results: There was a statistically significant reduction in major complications in the ciNPT group versus the standard dressing group (P = 0.0247). Drain removal time was higher in the ciNPT group. Conclusion: Our study shows that ciNPT may help reduce major complication rates in implant-based breast reconstruction patients.

9.
Cancers (Basel) ; 15(10)2023 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-37345155

RESUMO

BACKGROUND: Vestibular schwannomas (VS) are benign intracranial tumors caused by loss of function of the merlin tumor suppressor. We tested three hypotheses related to radiation, hearing loss (HL), and VS cell survival: (1) radiation causes HL by injuring auditory hair cells (AHC), (2) fractionation reduces radiation-induced HL, and (3) single fraction and equivalent appropriately dosed multi-fractions are equally effective at controlling VS growth. We investigated the effects of single fraction and hypofractionated radiation on hearing thresholds in rats, cell death pathways in rat cochleae, and viability of human merlin-deficient Schwann cells (MD-SC). METHODS: Adult rats received cochlear irradiation with single fraction (0 to 18 Gray [Gy]) or hypofractionated radiation. Auditory brainstem response (ABR) testing was performed for 24 weeks. AHC viabilities were determined using immunohistochemistry. Neonatal rat cochleae were harvested after irradiation, and gene- and cell-based assays were conducted. MD-SCs were irradiated, and viability assays and immunofluorescence for DNA damage and cell cycle markers were performed. RESULTS: Radiation caused dose-dependent and progressive HL in rats and AHC losses by promoting expression of apoptosis-associated genes and proteins. When compared to 12 Gy single fraction, hypofractionation caused smaller ABR threshold and pure tone average shifts and was more effective at reducing MD-SC viability. CONCLUSIONS: Investigations into the mechanisms of radiation ototoxicity and VS radiobiology will help determine optimal radiation regimens and identify potential therapies to mitigate radiation-induced HL and improve VS tumor control.

10.
Int J Part Ther ; 9(3): 18-29, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36721483

RESUMO

Purpose: When treating esophageal cancer with radiation therapy, it is critical to limit the dose to surrounding structures, such as the lung and/or heart, as much as possible. Proton radiation therapy allows a reduced radiation dose to both the heart and lungs, potentially reducing the risk of cardiopulmonary toxicity. Here, we report disease control, survival, and toxicity outcomes among patients with esophageal cancer treated with proton radiation therapy and concurrent chemotherapy (chemoradiation therapy; CRT) with or without surgery. Materials and Methods: We enrolled 17 patients with thoracic esophageal carcinoma on a prospective registry between 2010 and 2021. Patients received proton therapy to a median dose of 50.4-GyRBE (range, 50.4-64.8) in 1.8-Gy fractions.Acute and late toxicities were graded per the Common Terminology Criteria for Adverse Events, version 4.0 (US National Cancer Institute, Bethesda, Maryland). In addition, disease control, patterns of failure, and survival outcomes were collected. Results: Nine patients received preoperative CRT, and 8 received definitive CRT. Overall, 88% of patients had adenocarcinoma, and 12% had squamous cell carcinoma. With a median follow-up of 2.1 years (range, 0.5-9.4), the 3-year local progression-free, disease-free, and overall survival rates were 85%, 66%, and 55%, respectively. Two patients (1 with adenocarcinoma and 1 with squamous cell carcinoma) recurred at the primary site after refusing surgery after a complete clinical response to CRT. The most common acute nonhematologic and hematologic toxicities, respectively, were grades 1 to 3 esophagitis and grades 1 to 4 leukopenia, both affecting 82% of patients. No acute cardiopulmonary toxicities were observed in the absence of surgical resection. Reagarding surgical complications, 3 postoperative cardiopulmonary complications occurred as follows: 1 grade 1 pleural effusion, 1 grade 3 pleural effusion, and 1 grade 2 anastomotic leak. Two severe late CRT toxicities occurred: 1 grade 5 tracheoesophageal fistula and 1 grade 3 esophageal stenosis requiring a feeding tube. Conclusion: Proton radiation therapy is a safe, effective treatment for esophageal cancer with increasing evidence supporting its role in reducing cardiopulmonary toxicity.

12.
Med Phys ; 49(8): e983-e1023, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35662032

RESUMO

The task group (TG) on magnetic resonance imaging (MRI) implementation in high-dose-rate (HDR) brachytherapy (BT)-Considerations from simulation to treatment, TG 303, was constituted by the American Association of Physicists in Medicine's (AAPM's) Science Council under the direction of the Therapy Physics Committee, the Brachytherapy Subcommittee, and the Working Group on Brachytherapy Clinical Applications. The TG was charged with developing recommendations for commissioning, clinical implementation, and on-going quality assurance (QA). Additionally, the TG was charged with describing HDR BT workflows and evaluating practical consideration that arise when implementing MR imaging. For brevity, the report is focused on the treatment of gynecologic and prostate cancer. The TG report provides an introduction and rationale for MRI implementation in BT, a review of previous publications on topics including available applicators, clinical trials, previously published BT-related TG reports, and new image-guided recommendations beyond CT-based practices. The report describes MRI protocols and methodologies, including recommendations for the clinical implementation and logical considerations for MR imaging for HDR BT. Given the evolution from prescriptive to risk-based QA, an example of a risk-based analysis using MRI-based, prostate HDR BT is presented. In summary, the TG report is intended to provide clear and comprehensive guidelines and recommendations for commissioning, clinical implementation, and QA for MRI-based HDR BT that may be utilized by the medical physics community to streamline this process. This report is endorsed by the American Brachytherapy Society.


Assuntos
Braquiterapia , Neoplasias da Próstata , Braquiterapia/métodos , Humanos , Imageamento por Ressonância Magnética/métodos , Masculino , Próstata , Neoplasias da Próstata/diagnóstico por imagem , Neoplasias da Próstata/radioterapia , Dosagem Radioterapêutica , Estados Unidos
13.
Med Phys ; 49(1): 15-22, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34780068

RESUMO

PURPOSE: The purpose of this study was to develop and preliminarily test a radiotherapy system for patient posture correction and alignment using mixed reality (MixR) visualization. The write-up of this work also provides an opportunity to introduce the concepts and technology of MixR for a medical physics audience who may be unfamiliar with the topic. METHODS: A MixR application was developed for on optical-see-through head-mounted display (HoloLens 2) allowing a user to simultaneously and directly view a patient and a reference hologram derived from their simulation CT scan. The hologram provides a visual reference for the exact posture needed during treatment and is initialized in relation to the origin of a radiotherapy device using marker-based tracking. The system further provides marker-less tracking that allows the user tofreely navigate the room as they view and align the patient from various angles. The system was preliminarily tested using both a rigid (pelvis) and nonrigid (female mannequin) anthropomorphic phantom. Each phantom was aligned via hologram and accuracy quantified using CBCT and CT. RESULTS: A fully realized system was developed. Rigid registration accuracy was on the order of 3.0 ± 1.5 mm based on the performance of three users repeating alignment five times each. The lateral direction showed the most variability among users and was associated with the largest off-sets (approximately 2.0 mm). For nonrigid alignment, the MixR setup outperformed a setup based on three-point alignment and setup photos, the latter of which showed a difference in arm position of 2 cm and a torso roll of 6-7°. CONCLUSIONS: MixR visualization is a rapidly emerging domain that has the potential to significantly impact the field of medicine. The current application is an illustration of this and highlights the advantages of MixR for patient setup in radiation oncology. The key feature of the system is the way in which it transforms nonrigid registration into rigid registration by providing an efficient, portable, and cost-effective mechanism for reproducing patient posture without the use of ionizing radiation. Preliminary estimates of registration accuracy indicate clinical viability and form the foundation for further development and clinical testing.


Assuntos
Realidade Aumentada , Abdome , Simulação por Computador , Feminino , Humanos , Imagens de Fantasmas , Postura
14.
Cancers (Basel) ; 13(22)2021 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-34830844

RESUMO

(1) Background and purpose: clinical trials have unsuccessfully tried to de-escalate treatment in locally advanced human papillomavirus positive (HPV+) oropharyngeal squamous cell carcinoma (OPSCC) with the goal of reducing treatment toxicity. The aim of this study was to explore the role of radiomics for risk stratification in this patient population to guide treatment. (2) Methods: the study population consisted of 225 patients with locally advanced HPV+ OPSCC treated with curative-intent radiation or chemoradiation therapy. Appearance of distant metastasis was used as the endpoint event. Radiomics data were extracted from the gross tumor volumes (GTVs) identified on the planning CT, with gray level being discretized using three different bin widths (8, 16, and 32). The data extracted for the groups with and without distant metastasis were subsequently balanced using three different algorithms including synthetic minority over-sampling technique (SMOTE), adaptive synthetic sampling (ADASYN), and borderline SMOTE. From these different combinations, a total of nine radiomics datasets were derived. Top features that minimized redundancy while maximizing relevance to the endpoint were selected individually and collectively for the nine radiomics datasets to build support vector machine (SVM) based predictive classifiers. Performance of the developed classifiers was evaluated by receiver operating characteristic (ROC) curve analysis. (3) Results: of the 225 locally advanced HPV+ OPSCC patients being studied, 9.3% had developed distant metastases at last follow-up. SVM classifiers built for the nine radiomics dataset using either their own respective top features or the top consensus ones were all able to differentiate the two cohorts at a level of excellence or beyond, with ROC area under curve (AUC) ranging from 0.84 to 0.95 (median = 0.90). ROC comparisons further revealed that the majority of the built classifiers did not distinguish the two cohorts significantly better than each other. (4) Conclusions: radiomics demonstrated discriminative ability in distinguishing patients with locally advanced HPV+ OPSCC who went on to develop distant metastasis after completion of definitive chemoradiation or radiation alone and may serve to risk stratify this patient population with the purpose of guiding the appropriate therapy.

15.
Front Oncol ; 11: 611469, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34490075

RESUMO

BACKGROUND: Although there are some controversies regarding whole pelvic radiation therapy (WPRT) due to its gastrointestinal and hematologic toxicities, it is considered for patients with gynecological, rectal, and prostate cancer. To effectively spare organs-at-risk (OAR) doses using multi-leaf collimator (MLC)'s optimal segments, potential dosimetric benefits in volumetric modulated arc therapy (VMAT) using a half-beam technique (HF) were investigated for WPRT. METHODS: While the size of a fully opened field (FF) was decided to entirely include a planning target volume in all beam's eye view across arc angles, the HF was designed to use half the FF from the isocenter for dose optimization. The left or the right half of the FF was alternatively opened in VMAT-HF using a pair of arcs rotating clockwise and counterclockwise. Dosimetric benefits of VMAT-HF, presented with dose conformity, homogeneity, and dose-volume parameters in terms of modulation complex score, were compared to VMAT optimized using the FF (VMAT-FF). Consequent normal tissue complication probability (NTCP) by reducing the irradiated volumes was evaluated as well as dose-volume parameters with statistical analysis for OAR. Moreover, beam-on time and MLC position precision were analyzed with log files to assess plan deliverability and clinical applicability of VMAT-HF as compared to VMAT-FF. RESULTS: While VMAT-HF used 60%-70% less intensity modulation complexity than VMAT-FF, it showed superior dose conformity. The small intestine and colon in VMAT-HF showed a noticeable reduction in the irradiated volumes of up to 35% and 15%, respectively, at an intermediate dose of 20-45 Gy. The small intestine showed statistically significant dose sparing at the volumes that received a dose from 15 to 45 Gy. Such a dose reduction for the small intestine and colon in VMAT-HF presented a significant NTCP reduction from that in VMAT-FF. Without sacrificing the beam delivery efficiency, VMAT-HF achieved effective OAR dose reduction in dose-volume histograms. CONCLUSIONS: VMAT-HF led to deliver conformal doses with effective gastrointestinal-OAR dose sparing despite using less modulation complexity. The dose of VMAT-HF was delivered with the same beam-on time with VMAT-FF but precise MLC leaf motions. The VMAT-HF potentially can play a valuable role in reducing OAR toxicities associated with WPRT.

16.
Phys Rev Lett ; 126(2): 029901, 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-33512238

RESUMO

This corrects the article DOI: 10.1103/PhysRevLett.124.104501.

17.
Phys Rev Lett ; 124(10): 104501, 2020 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-32216417

RESUMO

An intrinsic feature of turbulent flows is an enhanced rate of mixing and kinetic energy dissipation due to the rapid generation of small-scale motions from large-scale excitation. The transfer of kinetic energy from large to small scales is commonly attributed to the stretching of vorticity by the strain rate, but strain self-amplification also plays a role. Previous treatments of this connection are phenomenological or inexact, or cannot distinguish the contribution of vorticity stretching from that of strain self-amplification. In this Letter, an exact relationship is derived which quantitatively establishes how intuitive multiscale mechanisms such as vorticity stretching and strain self-amplification together actuate the interscale transfer of energy in turbulence. Numerical evidence verifies this result and uses it to demonstrate that the contribution of strain self-amplification to energy transfer is higher than that of vorticity stretching, but not overwhelmingly so.

18.
Med Phys ; 47(6): e236-e272, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31967655

RESUMO

BACKGROUND: While the review of radiotherapy treatment plans and charts by a medical physicist is a key component of safe, high-quality care, very few specific recommendations currently exist for this task. AIMS: The goal of TG-275 is to provide practical, evidence-based recommendations on physics plan and chart review for radiation therapy. While this report is aimed mainly at medical physicists, others may benefit including dosimetrists, radiation therapists, physicians and other professionals interested in quality management. METHODS: The scope of the report includes photon/electron external beam radiotherapy (EBRT), proton radiotherapy, as well as high-dose rate (HDR) brachytherapy for gynecological applications (currently the highest volume brachytherapy service in most practices). The following review time points are considered: initial review prior to treatment, weekly review, and end-of-treatment review. The Task Group takes a risk-informed approach to developing recommendations. A failure mode and effects analysis was performed to determine the highest-risk aspects of each process. In the case of photon/electron EBRT, a survey of all American Association of Physicists in Medicine (AAPM) members was also conducted to determine current practices. A draft of this report was provided to the full AAPM membership for comment through a 3-week open-comment period, and the report was revised in response to these comments. RESULTS: The highest-risk failure modes included 112 failure modes in photon/electron EBRT initial review, 55 in weekly and end-of-treatment review, 24 for initial review specific to proton therapy, and 48 in HDR brachytherapy. A 103-question survey on current practices was released to all AAPM members who self-reported as working in the radiation oncology field. The response rate was 33%. The survey data and risk data were used to inform recommendations. DISCUSSION: Tables of recommended checks are presented and recommendations for best practice are discussed. Suggestions to software vendors are also provided. CONCLUSIONS: TG-275 provides specific recommendations for physics plan and chart review which should enhance the safety and quality of care for patients receiving radiation treatments.


Assuntos
Braquiterapia , Radioterapia (Especialidade) , Humanos , Fótons , Física , Planejamento da Radioterapia Assistida por Computador , Estados Unidos
19.
Plast Reconstr Surg Glob Open ; 8(12): e3305, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33425613

RESUMO

From a public health perspective, nasal surgery accounts for many unused opioids. Patients undergoing septorhinoplasty require few opioids, and efforts to eliminate this need may benefit both patients and the public. METHODS: A multimodal analgesic protocol consisting of 15 components encompassing all phases of care was implemented for 42 patients. RESULTS: Median age and BMI were 34 years and 23, respectively. Most were women (79%), White (79%), primary surgeries (62%), and self-pay (52%). Comorbid conditions were present in 74% of the patients, with anxiety (33%) and depression (21%) being the most common. Septoplasties (67%) and osteotomies (45%) were common. The median operative time was 70 minutes. No patients required opioids in recovery, and median time in recovery was 63 minutes. Ten (24%) patients required an opioid prescription after discharge. In those patients, median time to requirement was 27 hours (range 3-81), and median total requirement was 20 mg morphine equivalents (range 7.5-85). Protocol compliance inversely correlated to opioid use (P = 0.007). Compliance with local and regional anesthetic (20% versus 63%, P = 0.030) as well as ketorolac (70% versus 100%, P = 0.011) was lower in patients who required opioids. Patients who required opioids were less likely to be administered a beta blocker (0% versus 34%, P = 0.041). Pain scores were higher in opioid users on postoperative days 1-5 (P < 0.05). No complications occurred in those requiring opioids, and satisfaction rates were equivalent between groups. CONCLUSION: This protocol allowed us to safely omit opioid prescriptions in 76% of patients following septorhinoplasty, without adverse effects on outcomes or patient satisfaction.

20.
Data Brief ; 22: 620-626, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30671508

RESUMO

The tables included in this article will allow the user to implement shot within shot optimization for Gamma Knife radiosurgery planning and delivery. The method is intended to reduce treatment time when treating small to medium sized brain metastasis. The tables were previously developed by extracting profiles from Gamma Plan for three collimator settings and modeling their behavior when combined or prescribed at different isodose lines. For a given target size, the tables represent the optimal selection of shot weighting and prescription isodose line to reduce beam on time while maintaining an acceptable dose gradient. The method was recently validated in a large patient cohort and the data is this study is related to the research article titled "Clinical evaluation of shot within shot optimization for Gamma Knife radiosurgery planning and delivery" (Johnson et al., in press).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA