Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Development ; 137(7): 1075-84, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20181743

RESUMO

Polycystin 1 and polycystin 2 are large transmembrane proteins, which, when mutated, cause autosomal dominant polycystic kidney disease (ADPKD), a highly prevalent human genetic disease. The polycystins are thought to form a receptor-calcium channel complex in the plasma membrane of renal epithelial cells and elicit a calcium influx in response to mechanical stimulation, such as fluid flow across the apical surface of renal epithelial cells. The functional role of the polycystins in mechanosensation remains largely unknown. Here, we found that myocyte enhancer factor 2C (MEF2C) and histone deacetylase 5 (HDAC5), two key regulators of cardiac hypertrophy, are targets of polycystin-dependent fluid stress sensing in renal epithelial cells in mice. We show that fluid flow stimulation of polarized epithelial monolayers induced phosphorylation and nuclear export of HDAC5, which are crucial events in the activation of MEF2C-based transcription. Kidney-specific knockout of Mef2c, or genetrap-inactivation of a MEF2C transcriptional target, MIM, resulted in extensive renal tubule dilation and cysts, whereas Hdac5 heterozygosity or treatment with TSA, an HDAC inhibitor, reduced cyst formation in Pkd2(-/-) mouse embryos. These findings suggest a common signaling motif between myocardial hypertrophy and maintenance of renal epithelial architecture, and a potential therapeutic approach to treat ADPKD.


Assuntos
Histona Desacetilases/metabolismo , Fatores de Regulação Miogênica/metabolismo , Doenças Renais Policísticas/metabolismo , Canais de Cátion TRPP/metabolismo , Animais , Células Cultivadas , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Feminino , Perfilação da Expressão Gênica , Inibidores de Histona Desacetilases/metabolismo , Histona Desacetilases/genética , Humanos , Túbulos Renais/citologia , Túbulos Renais/metabolismo , Túbulos Renais/patologia , Fatores de Transcrição MEF2 , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Análise em Microsséries , Fatores de Regulação Miogênica/genética , Doenças Renais Policísticas/genética , Doenças Renais Policísticas/patologia , Reologia , Resistência ao Cisalhamento , Canais de Cátion TRPP/genética
2.
PLoS One ; 4(10): e7544, 2009 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-19847308

RESUMO

BACKGROUND: The protein kinases Mps1 and Polo, which are required for proper cell cycle regulation in meiosis and mitosis, localize to numerous ooplasmic filaments during prometaphase in Drosophila oocytes. These filaments first appear throughout the oocyte at the end of prophase and are disassembled after egg activation. METHODOLOGY/PRINCIPAL FINDINGS: We showed here that Mps1 and Polo proteins undergo dynamic and reversible localization to static ooplasmic filaments as part of an oocyte-specific response to hypoxia. The observation that Mps1- and Polo-associated filaments reappear in the same locations through multiple cycles of oxygen deprivation demonstrates that underlying structural components of the filaments must still be present during normoxic conditions. Using immuno-electron microscopy, we observed triple-helical binding of Mps1 to numerous electron-dense filaments, with the gold label wrapped around the outside of the filaments like a garland. In addition, we showed that in live oocytes the relocalization of Mps1 and Polo to filaments is sensitive to injection of collagenase, suggesting that the structural components of the filaments are composed of collagen-like fibrils. However, the collagen-like genes we have been able to test so far (vkg and CG42453) did not appear to be associated with the filaments, demonstrating that the collagenase-sensitive component of the filaments is one of a number of other Drosophila proteins bearing a collagenase cleavage site. Finally, as hypoxia is known to cause Mps1 protein to accumulate at kinetochores in syncytial embryos, we also show that GFP-Polo accumulates at both kinetochores and centrosomes in hypoxic syncytial embryos. CONCLUSIONS/SIGNIFICANCE: These findings identify both a novel cellular structure (the ooplasmic filaments) as well as a new localization pattern for Mps1 and Polo and demonstrate that hypoxia affects Polo localization in Drosophila.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila/metabolismo , Hipóxia , Oócitos/metabolismo , Proteínas Quinases/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Animais , Ciclo Celular , Colagenases/metabolismo , Feminino , Proteínas de Fluorescência Verde/metabolismo , Masculino , Meiose , Mitose , Modelos Biológicos , Prometáfase
3.
Nature ; 457(7225): 97-101, 2009 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-19052548

RESUMO

Haematopoietic stem cell (HSC) niches, although proposed decades ago, have only recently been identified as separate osteoblastic and vascular microenvironments. Their interrelationships and interactions with HSCs in vivo remain largely unknown. Here we report the use of a newly developed ex vivo real-time imaging technology and immunoassaying to trace the homing of purified green-fluorescent-protein-expressing (GFP(+)) HSCs. We found that transplanted HSCs tended to home to the endosteum (an inner bone surface) in irradiated mice, but were randomly distributed and unstable in non-irradiated mice. Moreover, GFP(+) HSCs were more frequently detected in the trabecular bone area compared with compact bone area, and this was validated by live imaging bioluminescence driven by the stem-cell-leukaemia (Scl) promoter-enhancer. HSCs home to bone marrow through the vascular system. We found that the endosteum is well vascularized and that vasculature is frequently localized near N-cadherin(+) pre-osteoblastic cells, a known niche component. By monitoring individual HSC behaviour using real-time imaging, we found that a portion of the homed HSCs underwent active division in the irradiated mice, coinciding with their expansion as measured by flow assay. Thus, in contrast to central marrow, the endosteum formed a special zone, which normally maintains HSCs but promotes their expansion in response to bone marrow damage.


Assuntos
Movimento Celular , Células-Tronco Hematopoéticas/citologia , Imunoensaio/métodos , Nicho de Células-Tronco/citologia , Animais , Vasos Sanguíneos/citologia , Medula Óssea/patologia , Caderinas/análise , Divisão Celular , Separação Celular , Fêmur/citologia , Imuno-Histoquímica , Camundongos , Modelos Animais , Osteoblastos/citologia , Molécula-1 de Adesão Celular Endotelial a Plaquetas/análise , Tíbia/citologia
4.
Nat Med ; 14(8): 863-8, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18552856

RESUMO

Autosomal dominant polycystic kidney disease (ADPKD) is caused by heterozygous mutations in either PKD1 or PKD2, genes that encode polycystin-1 and polycystin-2, respectively. We show here that tumor necrosis factor-alpha (TNF-alpha), an inflammatory cytokine present in the cystic fluid of humans with ADPKD, disrupts the localization of polycystin-2 to the plasma membrane and primary cilia through a scaffold protein, FIP2, which is induced by TNF-alpha. Treatment of mouse embryonic kidney organ cultures with TNF-alpha resulted in formation of cysts, and this effect was exacerbated in the Pkd2(+/-) kidneys. TNF-alpha also stimulated cyst formation in vivo in Pkd2(+/-) mice. In contrast, treatment of Pkd2(+/-) mice with the TNF-alpha inhibitor etanercept prevented cyst formation. These data reveal a pathway connecting TNF-alpha signaling, polycystins and cystogenesis, the activation of which may reduce functional polycystin-2 below a critical threshold, precipitating the ADPKD cellular phenotype.


Assuntos
Proteínas do Olho/genética , Mutação , Rim Policístico Autossômico Dominante/genética , Rim Policístico Autossômico Dominante/imunologia , Canais de Cátion TRPP/metabolismo , Fator de Transcrição TFIIIA/genética , Fator de Necrose Tumoral alfa/metabolismo , Animais , Proteínas de Ciclo Celular , Membrana Celular/metabolismo , Citocinas/metabolismo , Proteínas do Olho/metabolismo , Genes Dominantes , Humanos , Inflamação , Rim/metabolismo , Proteínas de Membrana Transportadoras , Camundongos , Técnicas de Cultura de Órgãos/métodos , Fator de Transcrição TFIIIA/metabolismo
5.
Genes Dev ; 21(9): 1113-24, 2007 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-17473173

RESUMO

Regulation of patterning and morphogenesis during embryonic development depends on tissue-specific signaling by retinoic acid (RA), the active form of Vitamin A (retinol). The first enzymatic step in RA synthesis, the oxidation of retinol to retinal, is thought to be carried out by the ubiquitous or overlapping activities of redundant alcohol dehydrogenases. The second oxidation step, the conversion of retinal to RA, is performed by retinaldehyde dehydrogenases. Thus, the specific spatiotemporal distribution of retinoid synthesis is believed to be controlled exclusively at the level of the second oxidation reaction. In an N-ethyl-N-nitrosourea (ENU)-induced forward genetic screen we discovered a new midgestation lethal mouse mutant, called trex, which displays craniofacial, limb, and organ abnormalities. The trex phenotype is caused by a mutation in the short-chain dehydrogenase/reductase, RDH10. Using protein modeling, enzymatic assays, and mutant embryos, we determined that RDH10(trex) mutant protein lacks the ability to oxidize retinol to retinal, resulting in insufficient RA signaling. Thus, we show that the first oxidative step of Vitamin A metabolism, which is catalyzed in large part by the retinol dehydrogenase RDH10, is critical for the spatiotemporal synthesis of RA. Furthermore, these results identify a new nodal point in RA metabolism during embryogenesis.


Assuntos
Oxirredutases do Álcool/genética , Oxirredutases do Álcool/metabolismo , Desenvolvimento Embrionário/genética , Desenvolvimento Embrionário/fisiologia , Tretinoína/metabolismo , Anormalidades Múltiplas/embriologia , Anormalidades Múltiplas/genética , Anormalidades Múltiplas/metabolismo , Oxirredutases do Álcool/química , Oxirredutases do Álcool/deficiência , Animais , Padronização Corporal/genética , Padronização Corporal/fisiologia , Extremidades/embriologia , Ossos Faciais/embriologia , Feminino , Genes Letais , Masculino , Fenômenos Fisiológicos da Nutrição Materna , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Modelos Moleculares , Mutação , Fenótipo , Gravidez , Transdução de Sinais , Crânio/embriologia , Tretinoína/administração & dosagem
6.
Nat Genet ; 39(2): 189-98, 2007 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17237784

RESUMO

Intestinal polyposis, a precancerous neoplasia, results primarily from an abnormal increase in the number of crypts, which contain intestinal stem cells (ISCs). In mice, widespread deletion of the tumor suppressor Phosphatase and tensin homolog (PTEN) generates hamartomatous intestinal polyps with epithelial and stromal involvement. Using this model, we have established the relationship between stem cells and polyp and tumor formation. PTEN helps govern the proliferation rate and number of ISCs and loss of PTEN results in an excess of ISCs. In PTEN-deficient mice, excess ISCs initiate de novo crypt formation and crypt fission, recapitulating crypt production in fetal and neonatal intestine. The PTEN-Akt pathway probably governs stem cell activation by helping control nuclear localization of the Wnt pathway effector beta-catenin. Akt phosphorylates beta-catenin at Ser552, resulting in a nuclear-localized form in ISCs. Our observations show that intestinal polyposis is initiated by PTEN-deficient ISCs that undergo excessive proliferation driven by Akt activation and nuclear localization of beta-catenin.


Assuntos
Mucosa Intestinal/metabolismo , Pólipos Intestinais/genética , PTEN Fosfo-Hidrolase/fisiologia , Células-Tronco/metabolismo , Animais , Contagem de Células , Ciclo Celular , Núcleo Celular/metabolismo , Camundongos , PTEN Fosfo-Hidrolase/genética , PTEN Fosfo-Hidrolase/metabolismo , Fosforilação , Proteínas Proto-Oncogênicas c-akt/metabolismo , beta Catenina/metabolismo
7.
Stem Cells ; 24(12): 2826-39, 2006 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-16960130

RESUMO

Epithelial stem cells (EP-SCs) located in the bulge region of a hair follicle (HF) have the potential to give rise to hair follicle stem/progenitor cells that migrate down to regenerate HFs. Bone morphogenetic protein (BMP) signaling has been shown to regulate the HF cycle by inhibiting anagen induction. Here we show that active BMP signaling functions to prevent EP-SC activation and expansion. Dynamic expression of Noggin, a BMP antagonist, releases EP-SCs from BMP-mediated restriction, leading to EP-SC activation and initiation of the anagen phase. Experimentally induced conditional inactivation of the BMP type IA receptor (Bmpr1a) in EP-SCs leads to overproduction of HF stem/progenitor cells and the eventual formation of matricomas. This genetic manipulation of the BMP signaling pathway also reveals unexpected activation of beta-catenin, a major mediator of Wnt signaling. We propose that BMP activity controls the HF cycle by antagonizing Wnt/beta-catenin activity. This is at least partially achieved by BMP-mediated enhancement of transforming growth factor-beta-regulated epithelial cell-specific phosphatase (PTEN) function. Subsequently, PTEN, through phosphatidyl inositol 3-kinase-Akt, inhibits the activity of beta-catenin, the convergence point of the BMP and Wnt signaling pathways.


Assuntos
Proteínas Morfogenéticas Ósseas/metabolismo , Células Epiteliais/citologia , Folículo Piloso/citologia , Folículo Piloso/fisiologia , Transdução de Sinais , Células-Tronco/citologia , Animais , Proteína Morfogenética Óssea 4 , Receptores de Proteínas Morfogenéticas Ósseas Tipo I/deficiência , Proteínas Morfogenéticas Ósseas/deficiência , Proteínas de Transporte/metabolismo , Proliferação de Células , DNA/metabolismo , Proteínas de Ligação ao GTP/metabolismo , Folículo Piloso/patologia , Integrases/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Modelos Biológicos , Proteínas de Resistência a Myxovirus , Neoplasias/patologia , PTEN Fosfo-Hidrolase/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Recombinação Genética , beta Catenina/metabolismo
8.
Dev Cell ; 10(3): 355-66, 2006 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-16516838

RESUMO

The segmented body plan of vertebrate embryos arises through segmentation of the paraxial mesoderm to form somites. The tight temporal and spatial control underlying this process of somitogenesis is regulated by the segmentation clock and the FGF signaling wavefront. Here, we report the cyclic mRNA expression of Snail 1 and Snail 2 in the mouse and chick presomitic mesoderm (PSM), respectively. Whereas Snail genes' oscillations are independent of NOTCH signaling, we show that they require WNT and FGF signaling. Overexpressing Snail 2 in the chick embryo prevents cyclic Lfng and Meso 1 expression in the PSM and disrupts somite formation. Moreover, cells mis-expressing Snail 2 fail to express Paraxis, remain mesenchymal, and are thereby inhibited from undergoing the epithelialization event that culminates in the formation of the epithelial somite. Thus, Snail genes define a class of cyclic genes that coordinate segmentation and PSM morphogenesis.


Assuntos
Padronização Corporal , Regulação da Expressão Gênica no Desenvolvimento , Mesoderma/fisiologia , Morfogênese , Isoformas de Proteínas , Fatores de Transcrição , Animais , Proteínas Aviárias/genética , Proteínas Aviárias/metabolismo , Proteína Axina , Embrião de Galinha , Proteínas do Citoesqueleto/genética , Proteínas do Citoesqueleto/metabolismo , Embrião de Mamíferos/anatomia & histologia , Embrião de Mamíferos/fisiologia , Embrião não Mamífero/anatomia & histologia , Embrião não Mamífero/fisiologia , Epitélio/embriologia , Fatores de Crescimento de Fibroblastos/metabolismo , Glicosiltransferases/genética , Glicosiltransferases/metabolismo , Camundongos , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptores Notch/metabolismo , Transdução de Sinais/fisiologia , Fatores de Transcrição da Família Snail , Somitos/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteínas Wnt/genética , Proteínas Wnt/metabolismo
9.
Proc Natl Acad Sci U S A ; 102(3): 565-70, 2005 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-15640352

RESUMO

Baculoviral inhibitor of apoptosis repeat-containing (Birc)6 gene/BIRC6 (Bruce/APOLLON) encodes an inhibitor of apoptosis and a chimeric E2/E3 ubiquitin ligase in mammals. The physiological role of Bruce in antiapoptosis is unknown. Here, we show that deletion of the C-terminal half of Bruce, including the UBC domain, causes activation of caspases and apoptosis in the placenta and yolk sac, leading to embryonic lethality. This apoptosis is associated with up-regulation and nuclear localization of the tumor suppressor p53 and activation of mitochondrial apoptosis, which includes up-regulation of Bax, Bak, and Pidd, translocation of Bax and caspase-2 onto mitochondria, release of cytochrome c and apoptosis-inducing factor, and activation of caspase-9 and caspase-3. Mutant mouse embryonic fibroblasts are sensitive to multiple mitochondrial death stimuli but resistant to TNF. In addition, eliminating p53 by RNA interference rescues cell viability induced by Bruce ablation in human cell line H460. This viability preservation results from reduced expression of proapoptotic factors Bax, Bak, and Pidd and from prevention of activation of caspase-2, -9, and -3. The amount of second mitochondrial-derived activator of caspase and Omi does not change. We conclude that p53 is a downstream effector of Bruce, and, in response to loss of Bruce function, p53 activates Pidd/caspase-2 and Bax/Bak, leading to mitochondrial apoptosis.


Assuntos
Apoptose , Desenvolvimento Embrionário/genética , Mitocôndrias/metabolismo , Proteínas de Neoplasias/genética , Proteína Supressora de Tumor p53/genética , Animais , Caspase 2 , Caspases/metabolismo , Perda do Embrião , Regulação da Expressão Gênica no Desenvolvimento , Homozigoto , Proteínas Inibidoras de Apoptose , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Mutantes , Mutação , Proteínas de Neoplasias/fisiologia , Placenta/patologia , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Saco Vitelino/patologia , Proteína Killer-Antagonista Homóloga a bcl-2
10.
Nature ; 425(6960): 836-41, 2003 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-14574412

RESUMO

Haematopoietic stem cells (HSCs) are a subset of bone marrow cells that are capable of self-renewal and of forming all types of blood cells (multi-potential). However, the HSC 'niche'--the in vivo regulatory microenvironment where HSCs reside--and the mechanisms involved in controlling the number of adult HSCs remain largely unknown. The bone morphogenetic protein (BMP) signal has an essential role in inducing haematopoietic tissue during embryogenesis. We investigated the roles of the BMP signalling pathway in regulating adult HSC development in vivo by analysing mutant mice with conditional inactivation of BMP receptor type IA (BMPRIA). Here we show that an increase in the number of spindle-shaped N-cadherin+CD45- osteoblastic (SNO) cells correlates with an increase in the number of HSCs. The long-term HSCs are found attached to SNO cells. Two adherens junction molecules, N-cadherin and beta-catenin, are asymmetrically localized between the SNO cells and the long-term HSCs. We conclude that SNO cells lining the bone surface function as a key component of the niche to support HSCs, and that BMP signalling through BMPRIA controls the number of HSCs by regulating niche size.


Assuntos
Proteínas Morfogenéticas Ósseas/metabolismo , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Receptores de Fatores de Crescimento/genética , Receptores de Fatores de Crescimento/metabolismo , Transdução de Sinais , Animais , Receptores de Proteínas Morfogenéticas Ósseas Tipo I , Osso e Ossos/citologia , Caderinas/metabolismo , Adesão Celular , Contagem de Células , Antígenos Comuns de Leucócito/metabolismo , Camundongos , Mutação/genética , Osteoblastos/citologia , Osteoblastos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA