Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Commun Biol ; 6(1): 529, 2023 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-37193883

RESUMO

Using a mutant screen, we identified trehalose 6-phosphate phosphatase 1 (TSPP1) as a functional enzyme dephosphorylating trehalose 6-phosphate (Tre6P) to trehalose in Chlamydomonas reinhardtii. The tspp1 knock-out results in reprogramming of the cell metabolism via altered transcriptome. As a secondary effect, tspp1 also shows impairment in 1O2-induced chloroplast retrograde signalling. From transcriptomic analysis and metabolite profiling, we conclude that accumulation or deficiency of certain metabolites directly affect 1O2-signalling. 1O2-inducible GLUTATHIONE PEROXIDASE 5 (GPX5) gene expression is suppressed by increased content of fumarate and 2-oxoglutarate, intermediates in the tricarboxylic acid cycle (TCA cycle) in mitochondria and dicarboxylate metabolism in the cytosol, but also myo-inositol, involved in inositol phosphate metabolism and phosphatidylinositol signalling system. Application of another TCA cycle intermediate, aconitate, recovers 1O2-signalling and GPX5 expression in otherwise aconitate-deficient tspp1. Genes encoding known essential components of chloroplast-to-nucleus 1O2-signalling, PSBP2, MBS, and SAK1, show decreased transcript levels in tspp1, which also can be rescued by exogenous application of aconitate. We demonstrate that chloroplast retrograde signalling involving 1O2 depends on mitochondrial and cytosolic processes and that the metabolic status of the cell determines the response to 1O2.


Assuntos
Chlamydomonas reinhardtii , Oxigênio Singlete , Oxigênio Singlete/metabolismo , Chlamydomonas reinhardtii/genética , Trealose/metabolismo , Ácido Aconítico/metabolismo , Ácido Aconítico/farmacologia , Fosfatos/metabolismo
2.
Trends Plant Sci ; 28(5): 537-543, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36740490

RESUMO

Greenhouse gas (GHG) emissions have created a global climate crisis which requires immediate interventions to mitigate the negative effects on all aspects of life on this planet. As current agriculture and land use contributes up to 25% of total GHG emissions, plant scientists take center stage in finding possible solutions for a transition to sustainable agriculture and land use. In this article, the PlantACT! (Plants for climate ACTion!) initiative of plant scientists lays out a road map of how and in which areas plant scientists can contribute to finding immediate, mid-term, and long-term solutions, and what changes are necessary to implement these solutions at the personal, institutional, and funding levels.


Assuntos
Agricultura , Gases de Efeito Estufa , Gases de Efeito Estufa/análise , Plantas , Mudança Climática , Efeito Estufa
3.
Plant Physiol ; 191(3): 1612-1633, 2023 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-36649171

RESUMO

In land plants and cyanobacteria, co-translational association of chlorophyll (Chl) to the nascent D1 polypeptide, a reaction center protein of photosystem II (PSII), requires a Chl binding complex consisting of a short-chain dehydrogenase (high chlorophyll fluorescence 244 [HCF244]/uncharacterized protein 39 [Ycf39]) and one-helix proteins (OHP1 and OHP2 in chloroplasts) of the light-harvesting antenna complex superfamily. Here, we show that an ohp2 mutant of the green alga Chlamydomonas (Chlamydomonas reinhardtii) fails to accumulate core PSII subunits, in particular D1 (encoded by the psbA mRNA). Extragenic suppressors arose at high frequency, suggesting the existence of another route for Chl association to PSII. The ohp2 mutant was complemented by the Arabidopsis (Arabidopsis thaliana) ortholog. In contrast to land plants, where psbA translation is prevented in the absence of OHP2, ribosome profiling experiments showed that the Chlamydomonas mutant translates the psbA transcript over its full length. Pulse labeling suggested that D1 is degraded during or immediately after translation. The translation of other PSII subunits was affected by assembly-controlled translational regulation. Proteomics showed that HCF244, a translation factor which associates with and is stabilized by OHP2 in land plants, still partly accumulates in the Chlamydomonas ohp2 mutant, explaining the persistence of psbA translation. Several Chl biosynthesis enzymes overaccumulate in the mutant membranes. Partial inactivation of a D1-degrading protease restored a low level of PSII activity in an ohp2 background, but not photoautotrophy. Taken together, our data suggest that OHP2 is not required for psbA translation in Chlamydomonas, but is necessary for D1 stabilization.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Chlamydomonas reinhardtii , Chlamydomonas , Complexo de Proteína do Fotossistema II/genética , Complexo de Proteína do Fotossistema II/metabolismo , Chlamydomonas/genética , Chlamydomonas/metabolismo , Proteínas/metabolismo , Cloroplastos/metabolismo , Arabidopsis/genética , Plantas/metabolismo , Clorofila/metabolismo , Chlamydomonas reinhardtii/genética , Chlamydomonas reinhardtii/metabolismo , Complexos de Proteínas Captadores de Luz/metabolismo , Proteínas de Arabidopsis/metabolismo
4.
Front Plant Sci ; 13: 876439, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35574084

RESUMO

A Chlamydomonas reinhardtii RuBisCO-less mutant, ΔrbcL, was used to study carbohydrate metabolism without fixation of atmospheric carbon. The regulatory mechanism(s) that control linear electron flow, known as "photosynthetic control," are amplified in ΔrbcL at the onset of illumination. With the aim to understand the metabolites that control this regulatory response, we have correlated the kinetics of primary carbon metabolites to chlorophyll fluorescence induction curves. We identify that ΔrbcL in the absence of acetate generates adenosine triphosphate (ATP) via photosynthetic electron transfer reactions. Also, metabolites of the Calvin Benson Bassham (CBB) cycle are responsive to the light. Indeed, ribulose 1,5-bisphosphate (RuBP), the last intermediate before carboxylation by Ribulose-1,5-bisphosphate carboxylase-oxygenase, accumulates significantly with time, and CBB cycle intermediates for RuBP regeneration, dihydroxyacetone phosphate (DHAP), pentose phosphates and ribose-5-phosphate (R5P) are rapidly accumulated in the first seconds of illumination, then consumed, showing that although the CBB is blocked, these enzymes are still transiently active. In opposition, in the presence of acetate, consumption of CBB cycle intermediates is strongly diminished, suggesting that the link between light and primary carbon metabolism is almost lost. Phosphorylated hexoses and starch accumulate significantly. We show that acetate uptake results in heterotrophic metabolism dominating phototrophic metabolism, with glyoxylate and tricarboxylic acid (TCA) cycle intermediates being the most highly represented metabolites, specifically succinate and malate. These findings allow us to hypothesize which metabolites and metabolic pathways are relevant to the upregulation of processes like cyclic electron flow that are implicated in photosynthetic control mechanisms.

5.
Plant Physiol ; 183(4): 1749-1764, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32327546

RESUMO

Protein phosphorylation plays important roles in short-term regulation of photosynthetic electron transfer, and during state transitions, the kinase STATE TRANSITION7 (STT7) of Chlamydomonas reinhardtii phosphorylates components of light-harvesting antenna complex II (LHCII). This reversible phosphorylation governs the dynamic allocation of a part of LHCII to PSI or PSII, depending on light conditions and metabolic demands, but counteracting phosphatase(s) remain unknown in C. reinhardtii Here we analyzed state transitions in C. reinhardtii mutants of two phosphatases, PROTEIN PHOSPHATASE1 and PHOTOSYSTEM II PHOSPHATASE, which are homologous to proteins that antagonize the state transition kinases (STN7 and STN8) in Arabidopsis (Arabidopsis thaliana). The transition from state 2 to state 1 was retarded in pph1, and surprisingly also in pbcp However, both mutants eventually returned to state 1. In contrast, the double mutant pph1;pbcp appeared strongly locked in state 2. The complex phosphorylation patterns of the LHCII trimers and of the monomeric subunits were affected in the phosphatase mutants. Their analysis indicated that the two phosphatases have different yet overlapping sets of protein targets. The dual control of thylakoid protein dephosphorylation and the more complex antenna phosphorylation patterns in C. reinhardtii compared to Arabidopsis are discussed in the context of the stronger amplitude of state transitions and the more diverse LHCII isoforms in the alga.


Assuntos
Arabidopsis/metabolismo , Chlamydomonas reinhardtii/metabolismo , Complexos de Proteínas Captadores de Luz/metabolismo , Complexo de Proteína do Fotossistema I/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Chlamydomonas reinhardtii/fisiologia , Transporte de Elétrons/genética , Transporte de Elétrons/fisiologia , Complexos de Proteínas Captadores de Luz/genética , Fosfoproteínas Fosfatases/genética , Fosfoproteínas Fosfatases/metabolismo , Complexo de Proteína do Fotossistema I/genética , Complexo de Proteína do Fotossistema II/genética , Complexo de Proteína do Fotossistema II/metabolismo , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Tilacoides/genética , Tilacoides/metabolismo
6.
Commun Biol ; 2: 159, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31069268

RESUMO

In the last common enzymatic step of tetrapyrrole biosynthesis, prior to the branching point leading to the biosynthesis of heme and chlorophyll, protoporphyrinogen IX (Protogen) is oxidised to protoporphyrin IX (Proto) by protoporphyrinogen IX oxidase (PPX). The absence of thylakoid-localised plastid terminal oxidase 2 (PTOX2) and cytochrome b6f complex in the ptox2 petB mutant, results in almost complete reduction of the plastoquinone pool (PQ pool) in light. Here we show that the lack of oxidised PQ impairs PPX function, leading to accumulation and subsequently uncontrolled oxidation of Protogen to non-metabolised Proto. Addition of 3(3,4-Dichlorophenyl)-1,1-dimethylurea (DCMU) prevents the over-reduction of the PQ pool in ptox2 petB and decreases Proto accumulation. This observation strongly indicates the need of oxidised PQ as the electron acceptor for the PPX reaction in Chlamydomonas reinhardtii. The PPX-PQ pool interaction is proposed to function as a feedback loop between photosynthetic electron transport and chlorophyll biosynthesis.


Assuntos
Proteínas de Algas/genética , Chlamydomonas reinhardtii/enzimologia , Clorofila/biossíntese , Regulação da Expressão Gênica de Plantas , Plastoquinona/metabolismo , Protoporfirinogênio Oxidase/genética , Proteínas de Algas/metabolismo , Chlamydomonas reinhardtii/efeitos dos fármacos , Chlamydomonas reinhardtii/genética , Complexo Citocromos b6f/genética , Complexo Citocromos b6f/metabolismo , Diurona/farmacologia , Transporte de Elétrons , Retroalimentação Fisiológica , Herbicidas/farmacologia , Oxirredução , Fotossíntese/efeitos dos fármacos , Fotossíntese/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plastídeos/efeitos dos fármacos , Plastídeos/enzimologia , Plastídeos/genética , Protoporfirinogênio Oxidase/metabolismo , Protoporfirinas/metabolismo
7.
Plant Physiol ; 177(2): 465-475, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29703866

RESUMO

Site-directed mutagenesis of chloroplast genes was developed three decades ago and has greatly advanced the field of photosynthesis research. Here, we describe a new approach for generating random chloroplast gene mutants that combines error-prone polymerase chain reaction of a gene of interest with chloroplast complementation of the knockout Chlamydomonas reinhardtii mutant. As a proof of concept, we targeted a 300-bp sequence of the petD gene that encodes subunit IV of the thylakoid membrane-bound cytochrome b6f complex. By sequencing chloroplast transformants, we revealed 149 mutations in the 300-bp target petD sequence that resulted in 92 amino acid substitutions in the 100-residue target subunit IV sequence. Our results show that this method is suited to the study of highly hydrophobic, multisubunit, and chloroplast-encoded proteins containing cofactors such as hemes, iron-sulfur clusters, and chlorophyll pigments. Moreover, we show that mutant screening and sequencing can be used to study photosynthetic mechanisms or to probe the mutational robustness of chloroplast-encoded proteins, and we propose that this method is a valuable tool for the directed evolution of enzymes in the chloroplast.


Assuntos
Chlamydomonas reinhardtii/genética , Proteínas de Cloroplastos/química , Proteínas de Cloroplastos/genética , Mutagênese , Reação em Cadeia da Polimerase/métodos , Biolística/métodos , Proteínas de Cloroplastos/metabolismo , Complexo Citocromos b6f/química , Complexo Citocromos b6f/genética , Complexo Citocromos b6f/metabolismo , Técnicas de Inativação de Genes , Biblioteca Gênica , Teste de Complementação Genética , Interações Hidrofóbicas e Hidrofílicas , Relação Estrutura-Atividade
8.
Plant J ; 94(5): 822-835, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29575329

RESUMO

Photosynthetic organisms have evolved numerous photoprotective mechanisms and alternative electron sinks/pathways to fine-tune the photosynthetic apparatus under dynamic environmental conditions, such as varying carbon supply or fluctuations in light intensity. In cyanobacteria flavodiiron proteins (FDPs) protect the photosynthetic apparatus from photodamage under fluctuating light (FL). In Arabidopsis thaliana, which does not possess FDPs, the PGR5-related pathway enables FL photoprotection. The direct comparison of the pgr5, pgrl1 and flv knockout mutants of Chlamydomonas reinhardtii grown under ambient air demonstrates that all three proteins contribute to the survival of cells under FL, but to varying extents. The FDPs are crucial in providing a rapid electron sink, with flv mutant lines unable to survive even mild FL conditions. In contrast, the PGRL1 and PGR5-related pathways operate over relatively slower and longer time-scales. Whilst deletion of PGR5 inhibits growth under mild FL, the pgrl1 mutant line is only impacted under severe FL conditions. This suggests distinct roles, yet a close relationship, between the function of PGR5, PGRL1 and FDP proteins in photoprotection.


Assuntos
Proteínas de Algas/metabolismo , Chlamydomonas reinhardtii/crescimento & desenvolvimento , Proteínas de Algas/fisiologia , Respiração Celular , Chlamydomonas reinhardtii/genética , Chlamydomonas reinhardtii/efeitos da radiação , Técnicas de Silenciamento de Genes , Genes de Plantas/genética , Genes de Plantas/fisiologia , Luz , Fotossíntese , Complexo de Proteína do Fotossistema I/metabolismo , Complexo de Proteína do Fotossistema I/fisiologia , Complexo de Proteína do Fotossistema II/metabolismo , Complexo de Proteína do Fotossistema II/fisiologia
9.
Plant J ; 94(6): 1023-1037, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29602195

RESUMO

The GreenCut encompasses a suite of nucleus-encoded proteins with orthologs among green lineage organisms (plants, green algae), but that are absent or poorly conserved in non-photosynthetic/heterotrophic organisms. In Chlamydomonas reinhardtii, CPLD49 (Conserved in Plant Lineage and Diatoms49) is an uncharacterized GreenCut protein that is critical for maintaining normal photosynthetic function. We demonstrate that a cpld49 mutant has impaired photoautotrophic growth under high-light conditions. The mutant exhibits a nearly 90% reduction in the level of the cytochrome b6 f complex (Cytb6 f), which impacts linear and cyclic electron transport, but does not compromise the ability of the strain to perform state transitions. Furthermore, CPLD49 strongly associates with thylakoid membranes where it may be part of a membrane protein complex with another GreenCut protein, CPLD38; a mutant null for CPLD38 also impacts Cytb6 f complex accumulation. We investigated several potential functions of CPLD49, with some suggested by protein homology. Our findings are congruent with the hypothesis that CPLD38 and CPLD49 are part of a novel thylakoid membrane complex that primarily modulates accumulation, but also impacts the activity of the Cytb6 f complex. Based on motifs of CPLD49 and the activities of other CPLD49-like proteins, we suggest a role for this putative dehydrogenase in the synthesis of a lipophilic thylakoid membrane molecule or cofactor that influences the assembly and activity of Cytb6 f.


Assuntos
Proteínas de Algas/metabolismo , Chlamydomonas reinhardtii/metabolismo , Complexo Citocromos b6f/metabolismo , Tilacoides/metabolismo , Carotenoides/metabolismo , Transporte de Elétrons , Fotossíntese
10.
Proc Natl Acad Sci U S A ; 114(45): 12063-12068, 2017 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-29078388

RESUMO

The cytochrome (cyt) b6f complex and Stt7 kinase regulate the antenna sizes of photosystems I and II through state transitions, which are mediated by a reversible phosphorylation of light harvesting complexes II, depending on the redox state of the plastoquinone pool. When the pool is reduced, the cyt b6f activates the Stt7 kinase through a mechanism that is still poorly understood. After random mutagenesis of the chloroplast petD gene, coding for subunit IV of the cyt b6f complex, and complementation of a ΔpetD host strain by chloroplast transformation, we screened for impaired state transitions in vivo by chlorophyll fluorescence imaging. We show that residues Asn122, Tyr124, and Arg125 in the stromal loop linking helices F and G of cyt b6f subunit IV are crucial for state transitions. In vitro reconstitution experiments with purified cyt b6f and recombinant Stt7 kinase domain show that cyt b6f enhances Stt7 autophosphorylation and that the Arg125 residue is directly involved in this process. The peripheral stromal structure of the cyt b6f complex had, until now, no reported function. Evidence is now provided of a direct interaction with Stt7 on the stromal side of the membrane.


Assuntos
Chlamydomonas/metabolismo , Complexo Citocromos b6f/metabolismo , Proteínas Quinases/metabolismo , Clorofila/metabolismo , Cloroplastos/metabolismo , Complexos de Proteínas Captadores de Luz/metabolismo , Oxirredução , Fosforilação/fisiologia , Complexo de Proteína do Fotossistema I/metabolismo , Complexo de Proteína do Fotossistema II/metabolismo , Plastoquinona/metabolismo
11.
Curr Opin Plant Biol ; 37: 78-86, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28426976

RESUMO

Photosynthetic reactions proceed along a linear electron transfer chain linking water oxidation at photosystem II (PSII) to CO2 reduction in the Calvin-Benson-Bassham cycle. Alternative pathways poise the electron carriers along the chain in response to changing light, temperature and CO2 inputs, under prolonged hydration stress and during development. We describe recent literature that reports the physiological functions of new molecular players. Such highlights include the flavodiiron proteins and their important role in the green lineage. The parsing of the proton-motive force between ΔpH and Δψ, regulated in many different ways (cyclic electron flow, ATPsynthase conductivity, ion/H+ transporters), is comprehensively reported. This review focuses on an integrated description of alternative electron transfer pathways and how they contribute to photosynthetic productivity in the context of plant fitness to the environment.


Assuntos
Transporte de Elétrons/fisiologia , Fotossíntese/fisiologia , Dióxido de Carbono/metabolismo , Transporte de Elétrons/genética , Fotossíntese/genética , Complexo de Proteína do Fotossistema II/metabolismo
13.
Photosynth Res ; 129(3): 307-20, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27534565

RESUMO

Both the structure and the protein composition of thylakoid membranes have an impact on light harvesting and electron transfer in the photosynthetic chain. Thylakoid membranes form stacks and lamellae where photosystem II and photosystem I localize, respectively. Light-harvesting complexes II can be associated to either PSII or PSI depending on the redox state of the plastoquinone pool, and their distribution is governed by state transitions. Upon state transitions, the thylakoid ultrastructure and lateral distribution of proteins along the membrane are subject to significant rearrangements. In addition, quinone diffusion is limited to membrane microdomains and the cytochrome b 6 f complex localizes either to PSII-containing grana stacks or PSI-containing stroma lamellae. Here, we discuss possible similarities or differences between green algae and C3 plants on the functional consequences of such heterogeneities in the photosynthetic electron transport chain and propose a model in which quinones, accepting electrons either from PSII (linear flow) or NDH/PGR pathways (cyclic flow), represent a crucial control point. Our aim is to give an integrated description of these processes and discuss their potential roles in the balance between linear and cyclic electron flows.


Assuntos
Clorófitas/metabolismo , Citocromos b/metabolismo , Clorófitas/efeitos da radiação , Proteínas de Cloroplastos/metabolismo , Proteínas de Cloroplastos/efeitos da radiação , Citocromos b/efeitos da radiação , Transporte de Elétrons , Elétrons , Luz , Oxirredução , Fosforilação , Fotossíntese/fisiologia , Complexo de Proteína do Fotossistema I/metabolismo , Complexo de Proteína do Fotossistema II/metabolismo , Plastoquinona/metabolismo , Tilacoides/metabolismo
14.
Plant Cell ; 28(5): 1182-99, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-27113776

RESUMO

The nucleo-cytoplasmic compartment exerts anterograde control on chloroplast gene expression through numerous proteins that intervene at posttranscriptional steps. Here, we show that the maturation of psaC mutant (mac1) of Chlamydomonas reinhardtii is defective in photosystem I and fails to accumulate psaC mRNA. The MAC1 locus encodes a member of the Half-A-Tetratricopeptide (HAT) family of super-helical repeat proteins, some of which are involved in RNA transactions. The Mac1 protein localizes to the chloroplast in the soluble fraction. MAC1 acts through the 5' untranslated region of psaC transcripts and is required for their stability. Small RNAs that map to the 5'end of psaC RNA in the wild type but not in the mac1 mutant are inferred to represent footprints of MAC1-dependent protein binding, and Mac1 expressed in bacteria binds RNA in vitro. A coordinate response to iron deficiency, which leads to dismantling of the photosynthetic electron transfer chain and in particular of photosystem I, also causes a decrease of Mac1. Overexpression of Mac1 leads to a parallel increase in psaC mRNA but not in PsaC protein, suggesting that Mac1 may be limiting for psaC mRNA accumulation but that other processes regulate protein accumulation. Furthermore, Mac 1 is differentially phosphorylated in response to iron availability and to conditions that alter the redox balance of the electron transfer chain.


Assuntos
Chlamydomonas reinhardtii/genética , Chlamydomonas reinhardtii/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Complexo de Proteína do Fotossistema I/genética , Núcleo Celular/metabolismo , Cloroplastos/metabolismo , Fotossíntese/genética , Complexo de Proteína do Fotossistema I/metabolismo , Ligação Proteica
15.
Proc Natl Acad Sci U S A ; 112(48): 14978-83, 2015 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-26627249

RESUMO

Photosynthetic microorganisms typically have multiple isoforms of the electron transfer protein ferredoxin, although we know little about their exact functions. Surprisingly, a Chlamydomonas reinhardtii mutant null for the ferredoxin-5 gene (FDX5) completely ceased growth in the dark, with both photosynthetic and respiratory functions severely compromised; growth in the light was unaffected. Thylakoid membranes in dark-maintained fdx5 mutant cells became severely disorganized concomitant with a marked decrease in the ratio of monogalactosyldiacylglycerol to digalactosyldiacylglycerol, major lipids in photosynthetic membranes, and the accumulation of triacylglycerol. Furthermore, FDX5 was shown to physically interact with the fatty acid desaturases CrΔ4FAD and CrFAD6, likely donating electrons for the desaturation of fatty acids that stabilize monogalactosyldiacylglycerol. Our results suggest that in photosynthetic organisms, specific redox reactions sustain dark metabolism, with little impact on daytime growth, likely reflecting the tailoring of electron carriers to unique intracellular metabolic circuits under these two very distinct redox conditions.


Assuntos
Chlamydomonas reinhardtii/enzimologia , Ácidos Graxos Dessaturases/metabolismo , Ferredoxinas/metabolismo , Galactolipídeos/metabolismo , Proteínas de Plantas/metabolismo , Tilacoides/metabolismo , Chlamydomonas reinhardtii/genética , Ácidos Graxos Dessaturases/genética , Ferredoxinas/genética , Galactolipídeos/genética , Oxirredução , Proteínas de Plantas/genética , Tilacoides/genética
16.
Front Plant Sci ; 6: 892, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26579146

RESUMO

Continuous hydrogen photo-production under sulfur deprivation was studied in the Chlamydomonas reinhardtii pgr5 pgrl1 double mutant and respective single mutants. Under medium light conditions, the pgr5 exhibited the highest performance and produced about eight times more hydrogen than the wild type, making pgr5 one of the most efficient hydrogen producer reported so far. The pgr5 pgrl1 double mutant showed an increased hydrogen burst at the beginning of sulfur deprivation under high light conditions, but in this case the overall amount of hydrogen produced by pgr5 pgrl1 as well as pgr5 was diminished due to photo-inhibition and increased degradation of PSI. In contrast, the pgrl1 was effective in hydrogen production in both high and low light. Blocking photosynthetic electron transfer by DCMU stopped hydrogen production almost completely in the mutant strains, indicating that the main pathway of electrons toward enhanced hydrogen production is via linear electron transport. Indeed, PSII remained more active and stable in the pgr mutant strains as compared to the wild type. Since transition to anaerobiosis was faster and could be maintained due to an increased oxygen consumption capacity, this likely preserves PSII from photo-oxidative damage in the pgr mutants. Hence, we conclude that increased hydrogen production under sulfur deprivation in the pgr5 and pgrl1 mutants is caused by an increased stability of PSII permitting sustainable light-driven hydrogen production in Chlamydomonas reinhardtii.

17.
Front Plant Sci ; 6: 875, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26528325

RESUMO

Cyclic electron flow (CEF) around PSI regulates acceptor-side limitations and has multiple functions in the green alga, Chlamydomonas reinhardtii. Here we draw on recent and historic literature and concentrate on its role in Photosystem I (PSI) photoprotection, outlining causes and consequences of damage to PSI and CEF's role as an avoidance mechanism. We outline two functions of CEF in PSI photoprotection that are both linked to luminal acidification: firstly, its action on Photosystem II with non-photochemical quenching and photosynthetic control and secondly, its action in poising the stroma to overcome acceptor-side limitation by rebalancing NADPH and ATP ratios for carbon fixation.

18.
Plant J ; 82(5): 861-73, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25898982

RESUMO

In plants and algae, chloroplast gene expression is controlled by nucleus-encoded proteins that bind to mRNAs in a specific manner, stabilizing mRNAs or promoting their splicing, editing, or translation. Here, we present the characterization of two mRNA stabilization factors of the green alga Chlamydomonas reinhardtii, which both belong to the OctotricoPeptide Repeat (OPR) family. MCG1 is necessary to stabilize the petG mRNA, encoding a small subunit of the cytochrome b6 f complex, while MBI1 stabilizes the psbI mRNA, coding for a small subunit of photosystem II. In the mcg1 mutant, the small RNA footprint corresponding to the 5'-end of the petG transcript is reduced in abundance. In both cases, the absence of the small subunit perturbs assembly of the cognate complex. Whereas PetG is essential for formation of a functional cytochrome b6 f dimer, PsbI appears partly dispensable as a low level of PSII activity can still be measured in its absence. Thus, nuclear control of chloroplast gene expression is not only exerted on the major core subunits of the complexes, but also on small subunits with a single transmembrane helix. While OPR proteins have thus far been involved in translation or trans-splicing of plastid mRNAs, our results expand the potential roles of this repeat family to their stabilization.


Assuntos
Chlamydomonas reinhardtii/genética , Complexo Citocromos b6f/genética , Complexo de Proteína do Fotossistema II/genética , Proteínas de Plantas/metabolismo , RNA de Cloroplastos/metabolismo , Chlamydomonas reinhardtii/metabolismo , Complexo Citocromos b6f/metabolismo , Regulação da Expressão Gênica de Plantas , Mutação , Complexo de Proteína do Fotossistema II/metabolismo , Proteínas de Plantas/genética , Estabilidade de RNA
19.
Plant Cell ; 26(7): 3036-50, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24989042

RESUMO

During oxygenic photosynthesis, metabolic reactions of CO2 fixation require more ATP than is supplied by the linear electron flow operating from photosystem II to photosystem I (PSI). Different mechanisms, such as cyclic electron flow (CEF) around PSI, have been proposed to participate in reequilibrating the ATP/NADPH balance. To determine the contribution of CEF to microalgal biomass productivity, here, we studied photosynthesis and growth performances of a knockout Chlamydomonas reinhardtii mutant (pgrl1) deficient in PROTON GRADIENT REGULATION LIKE1 (PGRL1)-mediated CEF. Steady state biomass productivity of the pgrl1 mutant, measured in photobioreactors operated as turbidostats, was similar to its wild-type progenitor under a wide range of illumination and CO2 concentrations. Several changes were observed in pgrl1, including higher sensitivity of photosynthesis to mitochondrial inhibitors, increased light-dependent O2 uptake, and increased amounts of flavodiiron (FLV) proteins. We conclude that a combination of mitochondrial cooperation and oxygen photoreduction downstream of PSI (Mehler reactions) supplies extra ATP for photosynthesis in the pgrl1 mutant, resulting in normal biomass productivity under steady state conditions. The lower biomass productivity observed in the pgrl1 mutant in fluctuating light is attributed to an inability of compensation mechanisms to respond to a rapid increase in ATP demand.


Assuntos
Chlamydomonas reinhardtii/metabolismo , Oxigênio/metabolismo , Fotossíntese , Trifosfato de Adenosina/metabolismo , Dióxido de Carbono/metabolismo , Chlamydomonas reinhardtii/crescimento & desenvolvimento , Chlamydomonas reinhardtii/efeitos da radiação , Cloroplastos/metabolismo , Transporte de Elétrons , Elétrons , Técnicas de Inativação de Genes , Luz , Mitocôndrias/metabolismo , Mutação , NADP/metabolismo , Oxirredução , Complexo de Proteína do Fotossistema I/metabolismo , Complexo de Proteína do Fotossistema II/metabolismo , Prótons
20.
Plant Physiol ; 165(1): 438-52, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24623849

RESUMO

The Chlamydomonas reinhardtii proton gradient regulation5 (Crpgr5) mutant shows phenotypic and functional traits similar to mutants in the Arabidopsis (Arabidopsis thaliana) ortholog, Atpgr5, providing strong evidence for conservation of PGR5-mediated cyclic electron flow (CEF). Comparing the Crpgr5 mutant with the wild type, we discriminate two pathways for CEF and determine their maximum electron flow rates. The PGR5/proton gradient regulation-like1 (PGRL1) ferredoxin (Fd) pathway, involved in recycling excess reductant to increase ATP synthesis, may be controlled by extreme photosystem I acceptor side limitation or ATP depletion. Here, we show that PGR5/PGRL1-Fd CEF functions in accordance with an ATP/redox control model. In the absence of Rubisco and PGR5, a sustained electron flow is maintained with molecular oxygen instead of carbon dioxide serving as the terminal electron acceptor. When photosynthetic control is decreased, compensatory alternative pathways can take the full load of linear electron flow. In the case of the ATP synthase pgr5 double mutant, a decrease in photosensitivity is observed compared with the single ATPase-less mutant that we assign to a decreased proton motive force. Altogether, our results suggest that PGR5/PGRL1-Fd CEF is most required under conditions when Fd becomes overreduced and photosystem I is subjected to photoinhibition. CEF is not a valve; it only recycles electrons, but in doing so, it generates a proton motive force that controls the rate of photosynthesis. The conditions where the PGR5 pathway is most required may vary in photosynthetic organisms like C. reinhardtii from anoxia to high light to limitations imposed at the level of carbon dioxide fixation.


Assuntos
Adenosina Trifosfatases/metabolismo , Trifosfato de Adenosina/farmacologia , Chlamydomonas reinhardtii/metabolismo , Mutação/genética , Proteínas de Plantas/metabolismo , Prótons , Western Blotting , Dióxido de Carbono/metabolismo , Carotenoides/metabolismo , Chlamydomonas reinhardtii/crescimento & desenvolvimento , Clorofila/metabolismo , Transporte de Elétrons/efeitos dos fármacos , Elétrons , Ferredoxinas/metabolismo , Fluorescência , Cinética , Oxirredução/efeitos dos fármacos , Oxigênio/metabolismo , Fotossíntese/efeitos dos fármacos , Complexo de Proteína do Fotossistema I/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA