Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Proc Natl Acad Sci U S A ; 120(11): e2220012120, 2023 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-36893260

RESUMO

Adenosine triphosphate-binding cassette (ABC) transporters, such as multidrug resistance protein 1 (MRP1), protect against cellular toxicity by exporting xenobiotic compounds across the plasma membrane. However, constitutive MRP1 function hinders drug delivery across the blood-brain barrier, and MRP1 overexpression in certain cancers leads to acquired multidrug resistance and chemotherapy failure. Small-molecule inhibitors have the potential to block substrate transport, but few show specificity for MRP1. Here we identify a macrocyclic peptide, named CPI1, which inhibits MRP1 with nanomolar potency but shows minimal inhibition of a related multidrug transporter P-glycoprotein. A cryoelectron microscopy (cryo-EM) structure at 3.27 Å resolution shows that CPI1 binds MRP1 at the same location as the physiological substrate leukotriene C4 (LTC4). Residues that interact with both ligands contain large, flexible sidechains that can form a variety of interactions, revealing how MRP1 recognizes multiple structurally unrelated molecules. CPI1 binding prevents the conformational changes necessary for adenosine triphosphate (ATP) hydrolysis and substrate transport, suggesting it may have potential as a therapeutic candidate.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP , Proteínas Associadas à Resistência a Múltiplos Medicamentos , Trifosfato de Adenosina/metabolismo , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/química , Transportadores de Cassetes de Ligação de ATP/metabolismo , Transporte Biológico , Microscopia Crioeletrônica , Leucotrieno C4/metabolismo , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Peptídeos/metabolismo , Peptídeos Cíclicos/farmacologia
2.
Nat Struct Mol Biol ; 30(1): 22-30, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36522428

RESUMO

Glycerol-3-phosphate acyltransferase (GPAT)1 is a mitochondrial outer membrane protein that catalyzes the first step of de novo glycerolipid biosynthesis. Hepatic expression of GPAT1 is linked to liver fat accumulation and the severity of nonalcoholic fatty liver diseases. Here we present the cryo-EM structures of human GPAT1 in substrate analog-bound and product-bound states. The structures reveal an N-terminal acyltransferase domain that harbors important catalytic motifs and a tightly associated C-terminal domain that is critical for proper protein folding. Unexpectedly, GPAT1 has no transmembrane regions as previously proposed but instead associates with the membrane via an amphipathic surface patch and an N-terminal loop-helix region that contains a mitochondrial-targeting signal. Combined structural, computational and functional studies uncover a hydrophobic pathway within GPAT1 for lipid trafficking. The results presented herein lay a framework for rational inhibitor development for GPAT1.


Assuntos
Fígado , Membranas Mitocondriais , Humanos , Fígado/metabolismo , Membranas Mitocondriais/metabolismo , Glicerol-3-Fosfato O-Aciltransferase/química , Glicerol-3-Fosfato O-Aciltransferase/metabolismo , Sequência de Aminoácidos
3.
Nat Commun ; 11(1): 3031, 2020 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-32541785

RESUMO

Chemokines are important protein-signaling molecules that regulate various immune responses by activating chemokine receptors which belong to the G protein-coupled receptor (GPCR) superfamily. Despite the substantial progression of our structural understanding of GPCR activation by small molecule and peptide agonists, the molecular mechanism of GPCR activation by protein agonists remains unclear. Here, we present a 3.3-Å cryo-electron microscopy structure of the human chemokine receptor CCR6 bound to its endogenous ligand CCL20 and an engineered Go. CCL20 binds in a shallow extracellular pocket, making limited contact with the core 7-transmembrane (TM) bundle. The structure suggests that this mode of binding induces allosterically a rearrangement of a noncanonical toggle switch and the opening of the intracellular crevice for G protein coupling. Our results demonstrate that GPCR activation by a protein agonist does not always require substantial interactions between ligand and the 7TM core region.


Assuntos
Quimiocina CCL20/metabolismo , Receptores CCR6/química , Receptores CCR6/metabolismo , Quimiocina CCL20/química , Quimiocina CCL20/genética , Microscopia Crioeletrônica , Humanos , Ligantes , Ligação Proteica , Receptores CCR6/genética , Receptores Acoplados a Proteínas G , Transdução de Sinais
4.
Elife ; 92020 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-32458799

RESUMO

ATP-binding cassette (ABC) transporters are molecular pumps ubiquitous across all kingdoms of life. While their structures have been widely reported, the kinetics governing their transport cycles remain largely unexplored. Multidrug resistance protein 1 (MRP1) is an ABC exporter that extrudes a variety of chemotherapeutic agents and native substrates. Previously, the structures of MRP1 were determined in an inward-facing (IF) or outward-facing (OF) conformation. Here, we used single-molecule fluorescence spectroscopy to track the conformational changes of bovine MRP1 (bMRP1) in real time. We also determined the structure of bMRP1 under active turnover conditions. Our results show that substrate stimulates ATP hydrolysis by accelerating the IF-to-OF transition. The rate-limiting step of the transport cycle is the dissociation of the nucleotide-binding-domain dimer, while ATP hydrolysis per se does not reset MRP1 to the resting state. The combination of structural and kinetic data illustrates how different conformations of MRP1 are temporally linked and how substrate and ATP alter protein dynamics to achieve active transport.


Assuntos
Proteínas Associadas à Resistência a Múltiplos Medicamentos/química , Trifosfato de Adenosina/química , Trifosfato de Adenosina/metabolismo , Animais , Sítios de Ligação , Bovinos , Microscopia Crioeletrônica , Cinética , Modelos Moleculares , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Conformação Proteica , Espectrometria de Fluorescência
5.
Cell ; 172(1-2): 81-89.e10, 2018 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-29290467

RESUMO

The multidrug resistance protein MRP1 is an ATP-driven pump that confers resistance to chemotherapy. Previously, we have shown that intracellular substrates are recruited to a bipartite binding site when the transporter rests in an inward-facing conformation. A key question remains: how are high-affinity substrates transferred across the membrane and released outside the cell? Using electron cryomicroscopy, we show here that ATP binding opens the transport pathway to the extracellular space and reconfigures the substrate-binding site such that it relinquishes its affinity for substrate. Thus, substrate is released prior to ATP hydrolysis. With this result, we now have a complete description of the conformational cycle that enables substrate transfer in a eukaryotic ABC exporter.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/química , Trifosfato de Adenosina/metabolismo , Leucotrieno C4/metabolismo , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Trifosfato de Adenosina/química , Animais , Sítios de Ligação , Células HEK293 , Humanos , Leucotrieno C4/química , Ligação Proteica , Multimerização Proteica , Células Sf9 , Spodoptera
6.
Nature ; 545(7652): 66-70, 2017 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-28424521

RESUMO

Membrane transporters move substrates across the membrane by alternating access of their binding sites between the opposite sides of the membrane. An emerging model of this process is the elevator mechanism, in which a substrate-binding transport domain moves a large distance across the membrane. This mechanism has been characterized by a transition between two states, but the conformational path that leads to the transition is not yet known, largely because the available structural information has been limited to the two end states. Here we present crystal structures of the inward-facing, intermediate, and outward-facing states of a concentrative nucleoside transporter from Neisseria wadsworthii. Notably, we determined the structures of multiple intermediate conformations, in which the transport domain is captured halfway through its elevator motion. Our structures present a trajectory of the conformational transition in the elevator model, revealing multiple intermediate steps and state-dependent conformational changes within the transport domain that are associated with the elevator-like motion.


Assuntos
Modelos Biológicos , Movimento , Neisseria/química , Proteínas de Transporte de Nucleosídeos/química , Proteínas de Transporte de Nucleosídeos/metabolismo , Sítios de Ligação , Cristalização , Cristalografia por Raios X , Cisteína/química , Cisteína/metabolismo , Elevadores e Escadas Rolantes , Ligantes , Modelos Moleculares , Mutação , Domínios Proteicos , Uridina/metabolismo
7.
Cell ; 168(6): 1075-1085.e9, 2017 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-28238471

RESUMO

The multidrug resistance protein MRP1 is an ATP-binding cassette (ABC) transporter that confers resistance to many anticancer drugs and plays a role in the disposition and efficacy of several opiates, antidepressants, statins, and antibiotics. In addition, MRP1 regulates redox homeostasis, inflammation, and hormone secretion. Using electron cryomicroscopy, we determined the molecular structures of bovine MRP1 in two conformations: an apo form at 3.5 Å without any added substrate and a complex form at 3.3 Å with one of its physiological substrates, leukotriene C4. These structures show that by forming a single bipartite binding site, MRP1 can recognize a spectrum of substrates with different chemical structures. We also observed large conformational changes induced by leukotriene C4, explaining how substrate binding primes the transporter for ATP hydrolysis. Structural comparison of MRP1 and P-glycoprotein advances our understanding of the common and unique properties of these two important molecules in multidrug resistance to chemotherapy.


Assuntos
Proteínas Associadas à Resistência a Múltiplos Medicamentos/química , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/química , Trifosfato de Adenosina/química , Animais , Bovinos , Microscopia Crioeletrônica , Resistência a Múltiplos Medicamentos , Células HEK293 , Humanos , Hidrólise , Camundongos , Modelos Moleculares , Proteínas Associadas à Resistência a Múltiplos Medicamentos/ultraestrutura , Domínios Proteicos , Células Sf9
8.
Methods Enzymol ; 556: 373-83, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25857791

RESUMO

Secondary active transporters are responsible for the cellular uptake of many biologically important molecules, including neurotransmitters, nutrients, and drugs. Because of their physiological and clinical importance, a method for assessing their transport activity in vitro is necessary to gain a better understanding of how these transporters function at the molecular level. In this chapter, we describe a protocol for reconstituting the concentrative nucleoside transporter from Vibrio cholerae into proteoliposomes. We then describe a radiolabeled substrate uptake assay that can be used to functionally characterize the transporter. These methods are relatively common and can be applied to other secondary active transporters, with or without some modification.


Assuntos
Proteínas de Bactérias/metabolismo , Lipossomos/metabolismo , Proteínas de Transporte de Nucleosídeos/metabolismo , Nucleosídeos/metabolismo , Vibrio cholerae/metabolismo , Transporte Biológico , Cólera/microbiologia , Modelos Moleculares , Proteolipídeos/metabolismo , Trítio/metabolismo , Uridina/metabolismo
9.
Elife ; 3: e03604, 2014 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-25082345

RESUMO

Concentrative nucleoside transporters (CNTs) are responsible for cellular entry of nucleosides, which serve as precursors to nucleic acids and act as signaling molecules. CNTs also play a crucial role in the uptake of nucleoside-derived drugs, including anticancer and antiviral agents. Understanding how CNTs recognize and import their substrates could not only lead to a better understanding of nucleoside-related biological processes but also the design of nucleoside-derived drugs that can better reach their targets. Here, we present a combination of X-ray crystallographic and equilibrium-binding studies probing the molecular origins of nucleoside and nucleoside drug selectivity of a CNT from Vibrio cholerae. We then used this information in chemically modifying an anticancer drug so that it is better transported by and selective for a single human CNT subtype. This work provides proof of principle for utilizing transporter structural and functional information for the design of compounds that enter cells more efficiently and selectively.


Assuntos
Proteínas de Bactérias/química , Proteínas de Membrana Transportadoras/química , Proteínas de Transporte de Nucleosídeos/química , Uridina/metabolismo , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Transporte Biológico , Cristalografia por Raios X , Desoxicitidina/análogos & derivados , Desoxicitidina/química , Desoxicitidina/metabolismo , Feminino , Expressão Gênica , Humanos , Cinética , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Simulação de Acoplamento Molecular , Proteínas de Transporte de Nucleosídeos/genética , Proteínas de Transporte de Nucleosídeos/metabolismo , Oócitos/citologia , Oócitos/efeitos dos fármacos , Oócitos/metabolismo , Ligação Proteica , Relação Quantitativa Estrutura-Atividade , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Ribavirina/química , Ribavirina/metabolismo , Especificidade por Substrato , Termodinâmica , Uridina/química , Vibrio cholerae/química , Vibrio cholerae/metabolismo , Xenopus laevis , Gencitabina
10.
Nature ; 483(7390): 489-93, 2012 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-22407322

RESUMO

Nucleosides are required for DNA and RNA synthesis, and the nucleoside adenosine has a function in a variety of signalling processes. Transport of nucleosides across cell membranes provides the major source of nucleosides in many cell types and is also responsible for the termination of adenosine signalling. As a result of their hydrophilic nature, nucleosides require a specialized class of integral membrane proteins, known as nucleoside transporters (NTs), for specific transport across cell membranes. In addition to nucleosides, NTs are important determinants for the transport of nucleoside-derived drugs across cell membranes. A wide range of nucleoside-derived drugs, including anticancer drugs (such as Ara-C and gemcitabine) and antiviral drugs (such as zidovudine and ribavirin), have been shown to depend, at least in part, on NTs for transport across cell membranes. Concentrative nucleoside transporters, members of the solute carrier transporter superfamily SLC28, use an ion gradient in the active transport of both nucleosides and nucleoside-derived drugs against their chemical gradients. The structural basis for selective ion-coupled nucleoside transport by concentrative nucleoside transporters is unknown. Here we present the crystal structure of a concentrative nucleoside transporter from Vibrio cholerae in complex with uridine at 2.4 Å. Our functional data show that, like its human orthologues, the transporter uses a sodium-ion gradient for nucleoside transport. The structure reveals the overall architecture of this class of transporter, unravels the molecular determinants for nucleoside and sodium binding, and provides a framework for understanding the mechanism of nucleoside and nucleoside drug transport across cell membranes.


Assuntos
Proteínas de Transporte de Nucleosídeos/química , Vibrio cholerae/química , Sítios de Ligação , Transporte Biológico , Cristalografia por Raios X , Humanos , Modelos Moleculares , Proteínas de Transporte de Nucleosídeos/metabolismo , Nucleosídeos/metabolismo , Conformação Proteica , Dobramento de Proteína , Sódio/metabolismo , Uridina/química , Uridina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA