Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Glob Chang Biol ; 29(13): 3634-3651, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37070967

RESUMO

The increasing frequency and intensity of climate extremes and complex ecosystem responses motivate the need for integrated observational studies at low latency to determine biosphere responses and carbon-climate feedbacks. Here, we develop a satellite-based rapid attribution workflow and demonstrate its use at a 1-2-month latency to attribute drivers of the carbon cycle feedbacks during the 2020-2021 Western US drought and heatwave. In the first half of 2021, concurrent negative photosynthesis anomalies and large positive column CO2 anomalies were detected with satellites. Using a simple atmospheric mass balance approach, we estimate a surface carbon efflux anomaly of 132 TgC in June 2021, a magnitude corroborated independently with a dynamic global vegetation model. Integrated satellite observations of hydrologic processes, representing the soil-plant-atmosphere continuum (SPAC), show that these surface carbon flux anomalies are largely due to substantial reductions in photosynthesis because of a spatially widespread moisture-deficit propagation through the SPAC between 2020 and 2021. A causal model indicates deep soil moisture stores partially drove photosynthesis, maintaining its values in 2020 and driving its declines throughout 2021. The causal model also suggests legacy effects may have amplified photosynthesis deficits in 2021 beyond the direct effects of environmental forcing. The integrated, observation framework presented here provides a valuable first assessment of a biosphere extreme response and an independent testbed for improving drought propagation and mechanisms in models. The rapid identification of extreme carbon anomalies and hotspots can also aid mitigation and adaptation decisions.


Assuntos
Secas , Ecossistema , Atmosfera , Ciclo do Carbono , Solo , Plantas , Carbono , Mudança Climática
2.
Glob Chang Biol ; 29(11): 2893-2925, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36802124

RESUMO

Although our observing capabilities of solar-induced chlorophyll fluorescence (SIF) have been growing rapidly, the quality and consistency of SIF datasets are still in an active stage of research and development. As a result, there are considerable inconsistencies among diverse SIF datasets at all scales and the widespread applications of them have led to contradictory findings. The present review is the second of the two companion reviews, and data oriented. It aims to (1) synthesize the variety, scale, and uncertainty of existing SIF datasets, (2) synthesize the diverse applications in the sector of ecology, agriculture, hydrology, climate, and socioeconomics, and (3) clarify how such data inconsistency superimposed with the theoretical complexities laid out in (Sun et al., 2023) may impact process interpretation of various applications and contribute to inconsistent findings. We emphasize that accurate interpretation of the functional relationships between SIF and other ecological indicators is contingent upon complete understanding of SIF data quality and uncertainty. Biases and uncertainties in SIF observations can significantly confound interpretation of their relationships and how such relationships respond to environmental variations. Built upon our syntheses, we summarize existing gaps and uncertainties in current SIF observations. Further, we offer our perspectives on innovations needed to help improve informing ecosystem structure, function, and service under climate change, including enhancing in-situ SIF observing capability especially in "data desert" regions, improving cross-instrument data standardization and network coordination, and advancing applications by fully harnessing theory and data.


Assuntos
Ecossistema , Fotossíntese , Clorofila , Fluorescência , Estações do Ano
3.
Glob Chang Biol ; 29(11): 2926-2952, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36799496

RESUMO

Solar-induced chlorophyll fluorescence (SIF) is a remotely sensed optical signal emitted during the light reactions of photosynthesis. The past two decades have witnessed an explosion in availability of SIF data at increasingly higher spatial and temporal resolutions, sparking applications in diverse research sectors (e.g., ecology, agriculture, hydrology, climate, and socioeconomics). These applications must deal with complexities caused by tremendous variations in scale and the impacts of interacting and superimposing plant physiology and three-dimensional vegetation structure on the emission and scattering of SIF. At present, these complexities have not been overcome. To advance future research, the two companion reviews aim to (1) develop an analytical framework for inferring terrestrial vegetation structures and function that are tied to SIF emission, (2) synthesize progress and identify challenges in SIF research via the lens of multi-sector applications, and (3) map out actionable solutions to tackle these challenges and offer our vision for research priorities over the next 5-10 years based on the proposed analytical framework. This paper is the first of the two companion reviews, and theory oriented. It introduces a theoretically rigorous yet practically applicable analytical framework. Guided by this framework, we offer theoretical perspectives on three overarching questions: (1) The forward (mechanism) question-How are the dynamics of SIF affected by terrestrial ecosystem structure and function? (2) The inference question: What aspects of terrestrial ecosystem structure, function, and service can be reliably inferred from remotely sensed SIF and how? (3) The innovation question: What innovations are needed to realize the full potential of SIF remote sensing for real-world applications under climate change? The analytical framework elucidates that process complexity must be appreciated in inferring ecosystem structure and function from the observed SIF; this framework can serve as a diagnosis and inference tool for versatile applications across diverse spatial and temporal scales.


Assuntos
Clorofila , Ecossistema , Clorofila/análise , Fluorescência , Monitoramento Ambiental , Estações do Ano , Fotossíntese/fisiologia
4.
Sci Adv ; 6(28): eabc2992, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32923601

RESUMO

China's policy interventions to reduce the spread of the coronavirus disease 2019 have environmental and economic impacts. Tropospheric nitrogen dioxide indicates economic activities, as nitrogen dioxide is primarily emitted from fossil fuel consumption. Satellite measurements show a 48% drop in tropospheric nitrogen dioxide vertical column densities from the 20 days averaged before the 2020 Lunar New Year to the 20 days averaged after. This decline is 21 ± 5% larger than that from 2015 to 2019. We relate this reduction to two of the government's actions: the announcement of the first report in each province and the date of a province's lockdown. Both actions are associated with nearly the same magnitude of reductions. Our analysis offers insights into the unintended environmental and economic consequences through reduced economic activities.

5.
Atmos Meas Tech ; 13(5)2020 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-32670429

RESUMO

NASA's Deriving Information on Surface Conditions from Column and Vertically Resolved Observations Relevant to Air Quality (DISCOVER-AQ, conducted in 2011-2014) campaign in the United States and the joint NASA and National Institute of Environmental Research (NIER) Korea-United States Air Quality Study (KORUS-AQ, conducted in 2016) in South Korea were two field study programs that provided comprehensive, integrated datasets of airborne and surface observations of atmospheric constituents, including nitrogen dioxide (NO2), with the goal of improving the interpretation of spaceborne remote sensing data. Various types of NO2 measurements were made, including in situ concentrations and column amounts of NO2 using ground- and aircraft-based instruments, while NO2 column amounts were being derived from the Ozone Monitoring Instrument (OMI) on the Aura satellite. This study takes advantage of these unique datasets by first evaluating in situ data taken from two different instruments on the same aircraft platform, comparing coincidently sampled profile-integrated columns from aircraft spirals with remotely sensed column observations from ground-based Pandora spectrometers, intercomparing column observations from the ground (Pandora), aircraft (in situ vertical spirals), and space (OMI), and evaluating NO2 simulations from coarse Global Modeling Initiative (GMI) and high-resolution regional models. We then use these data to interpret observed discrepancies due to differences in sampling and deficiencies in the data reduction process. Finally, we assess satellite retrieval sensitivity to observed and modeled a priori NO2 profiles. Contemporaneous measurements from two aircraft instruments that likely sample similar air masses generally agree very well but are also found to differ in integrated columns by up to 31.9 %. These show even larger differences with Pandora, reaching up to 53.9 %, potentially due to a combination of strong gradients in NO2 fields that could be missed by aircraft spirals and errors in the Pandora retrievals. OMI NO2 values are about a factor of 2 lower in these highly polluted environments due in part to inaccurate retrieval assumptions (e.g., a priori profiles) but mostly to OMI's large footprint (> 312 km2).

6.
Remote Sens Environ ; 2312019 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-33414568

RESUMO

Remote sensing of solar-induced chlorophyll fluorescence (SIF) is a rapidly advancing front in terrestrial vegetation science, with emerging capability in space-based methodologies and diverse application prospects. Although remote sensing of SIF - especially from space - is seen as a contemporary new specialty for terrestrial plants, it is founded upon a multi-decadal history of research, applications, and sensor developments in active and passive sensing of chlorophyll fluorescence. Current technical capabilities allow SIF to be measured across a range of biological, spatial, and temporal scales. As an optical signal, SIF may be assessed remotely using highly-resolved spectral sensors and state-of-the-art algorithms to distinguish the emission from reflected and/or scattered ambient light. Because the red to far-red SIF emission is detectable non-invasively, it may be sampled repeatedly to acquire spatio-temporally explicit information about photosynthetic light responses and steady-state behaviour in vegetation. Progress in this field is accelerating with innovative sensor developments, retrieval methods, and modelling advances. This review distills the historical and current developments spanning the last several decades. It highlights SIF heritage and complementarity within the broader field of fluorescence science, the maturation of physiological and radiative transfer modelling, SIF signal retrieval strategies, techniques for field and airborne sensing, advances in satellite-based systems, and applications of these capabilities in evaluation of photosynthesis and stress effects. Progress, challenges, and future directions are considered for this unique avenue of remote sensing.

7.
Atmos Meas Tech ; 12(3): 2019-2031, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31921373

RESUMO

This paper presents the physical basis of the EPIC cloud product algorithms and an initial evaluation of their performance. Since June 2015, EPIC has been providing observations of the sunlit side of the Earth with its 10 spectral channels ranging from the UV to the near-IR. A suite of algorithms has been developed to generate the standard EPIC Level 2 Cloud Products that include cloud mask, cloud effective pressure/height, and cloud optical thickness. The EPIC cloud mask adopts the threshold method and utilizes multichannel observations and ratios as tests. Cloud effective pressure/height is derived with observations from the O2 A-band (780 nm and 764 nm), and B-band (680 nm and 688 nm) pairs. The EPIC cloud optical thickness retrieval adopts a single channel approach where the 780 nm and 680 nm channels are used for retrievals over ocean and over land, respectively. Comparison with co-located cloud retrievals from geosynchronous earth orbit (GEO) and low earth orbit (LEO) satellites shows that the EPIC cloud product algorithms are performing well and are consistent with theoretical expectations. These products are publicly available at the Atmospheric Science Data Center at the NASA Langley Research Center for climate studies and for generating other geophysical products that require cloud properties as input.

8.
Remote Sens Environ ; 2322019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33149371

RESUMO

Photosynthetic capacity is often quantified by the Rubisco-limited photosynthetic capacity (i.e. maximum carboxylation rate, Vcmax). It is a key plant functional trait that is widely used in Earth System Models for simulation of the global carbon and water cycles. Measuring Vcmax is time-consuming and laborious; therefore, the spatiotemporal distribution of Vcmax is still poorly understood due to limited measurements of Vcmax. In this study, we used a data assimilation approach to map the spatial variation of Vcmax for global terrestrial ecosystems from a 11-year-long satellite-observed solar-induced chlorophyll fluorescence (SIF) record. In this SIF-derived Vcmax map, the mean Vcmax value for each plant function type (PFT) is found to be comparable to a widely used N-derived Vcmax dataset by Kattge et al. (2009). The gradient of Vcmax along PFTs is clearly revealed even without land cover information as an input. Large seasonal and spatial variations of Vcmax are found within each PFT, especially for diverse crop rotation systems. The distribution of major crop belts, characterized with high Vcmax values, is highlighted in this Vcmax map. Legume plants are characterized with high Vcmax values. This Vcmax map also clearly illustrates the emerging soybean revolution in South America where Vcmax is the highest among the world. The gradient of Vcmax in Amazon is found to follow the transition of soil types with different soil N and P contents. This study suggests that satellite-observed SIF is powerful in deriving the important plant functional trait, i.e. Vcmax, for global climate change studies.

9.
Glob Chang Biol ; 24(11): 5017-5020, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30136335

RESUMO

Written Summary: It is important to understand how sun-sensor geometry affects satellite sun-induced fluorescence (SIF) in order to take full advantage of these measurements, particularly given their close relationship with gross primary production (GPP). We displayed the bidirectionality of SIF at different viewing zenith angles in the solar principal plane and observed a clear bowl shape of SIF from the backward to forward scattering directions. Therefore, it is important to consider the bidirectionality of SIF when using OCO-2 SIF data to evaluate the SIF-GPP relationship.


Assuntos
Biomassa , Clorofila/análise , Ecossistema , Fluorescência , Tecnologia de Sensoriamento Remoto/métodos , Sistema Solar , Tecnologia de Sensoriamento Remoto/instrumentação , Astronave
10.
Sci Rep ; 8(1): 8892, 2018 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-29875416

RESUMO

A correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has been fixed in the paper.

11.
Geophys Res Lett ; 45(19): 10456-10463, 2018 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-33104094

RESUMO

In recent years, solar-induced chlorophyll fluorescence (SIF) retrieved from space borne spectrometers has been extensively used as a proxy for terrestrial photosynthesis at relatively sparse temporal and spatial scales. The near-infrared band of the recently launched TROPOspheric Monitoring Instrument (TROPOMI) features the required spectral resolution and signal-to-noise ratio to retrieve SIF in a spectral range devoid of atmospheric absorption features. We find that initial TROPOMI spectra meet high expectations for a substantially improved spatio-temporal resolution (up to 7 km × 3.5 km pixels with daily revisit), representing a step change in SIF remote sensing capabilities. However, interpretation requires caution, as the broad range of viewing-illumination geometries covered by TROPOMI's 2600 km wide swath needs to be taken into account. A first inter-sensor comparison with OCO-2 (Orbiting Carbon Observatory-2) SIF shows excellent agreement, underscoring the high quality of TROPOMI's SIF retrievals and the notable radiometric performance of the instrument. PLAIN LANGUAGE SUMMARY: Photosynthesis is the most essential process for life on Earth, but gradually changing environmental conditions such as increasing concentrations of atmospheric trace gases, rising temperatures or reduced water availability could adversely affect the photosynthetic productivity. The recently launched TROPOspheric Monitoring Instrument (TROPOMI) is designed to monitor atmospheric trace gases and air pollutants with an unprecedented resolution in space and time, while its radiometric performance also permits us to see a weak electromagnetic signal emitted by photosynthetically active vegetation - solar induced chlorophyll fluorescence (SIF). Mounting evidence suggests that SIF observations from satellite instruments augment our abilities to track the photosynthetic performance and carbon uptake of terrestrial vegetation. In this study, we present the first TROPOMI SIF retrievals, largely outperforming previous and existing capabilities for a spatial continuous monitoring of SIF from space.

12.
Remote Sens Environ ; 219: 339-352, 2018 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-31217640

RESUMO

Monitoring the effects of water availability on vegetation globally using satellites is important for applications such as drought early warning, precision agriculture, and food security as well as for more broadly understanding relationships between water and carbon cycles. In this global study, we examine how quickly several satellite-based indicators, assumed to have relationships with water availability, respond, on timescales of days to weeks, in comparison with variations in root-zone soil moisture (RZM) that extends to about 1 m depth. The satellite indicators considered are the normalized difference vegetation and infrared indices (NDVI and NDII, respectively) derived from reflectances obtained with moderately wide (20-40 nm) spectral bands in the visible and near-infrared (NIR) and evapotranspiration (ET) estimated from thermal infrared observations and normalized by a reference ET. NDVI is primarily sensitive to chlorophyll contributions and vegetation structure while NDII may contain additional information on water content in leaves and canopy. ET includes both the loss of root zone soil water through transpiration (modulated by stomatal conductance) as well as evaporation from bare soil. We find that variations of these satellite-based drought indicators on time scales of days to weeks have significant correlations with those of RZM in the same water-limited geographical locations that are dominated by grasslands, shrublands, and savannas whose root systems are generally contained within the 1 m RZM layer. Normalized ET interannual variations show generally a faster response to water deficits and enhancements as compared with those of NDVI and NDII, particularly in sparsely vegetated regions.

13.
Sci Rep ; 7(1): 14963, 2017 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-29097731

RESUMO

The gross primary production (GPP) of vegetation in urban areas plays an important role in the study of urban ecology. It is difficult however, to accurately estimate GPP in urban areas, mostly due to the complexity of impervious land surfaces, buildings, vegetation, and management. Recently, we used the Vegetation Photosynthesis Model (VPM), climate data, and satellite images to estimate the GPP of terrestrial ecosystems including urban areas. Here, we report VPM-based GPP (GPPvpm) estimates for the world's ten most populous megacities during 2000-2014. The seasonal dynamics of GPPvpm during 2007-2014 in the ten megacities track well that of the solar-induced chlorophyll fluorescence (SIF) data from GOME-2 at 0.5° × 0.5° resolution. Annual GPPvpm during 2000-2014 also shows substantial variation among the ten megacities, and year-to-year trends show increases, no change, and decreases. Urban expansion and vegetation collectively impact GPP variations in these megacities. The results of this study demonstrate the potential of a satellite-based vegetation photosynthesis model for diagnostic studies of GPP and the terrestrial carbon cycle in urban areas.


Assuntos
Clorofila/metabolismo , Fotossíntese , Plantas/metabolismo , Ciclo do Carbono , Ecossistema , Fluorescência , Modelos Biológicos , Desenvolvimento Vegetal , Luz Solar , Urbanização
14.
Sci Rep ; 7(1): 14304, 2017 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-29123116

RESUMO

Severe haze is a major public health concern in China and India. Both countries rely heavily on coal for energy, and sulfur dioxide (SO2) emitted from coal-fired power plants and industry is a major pollutant contributing to their air quality problems. Timely, accurate information on SO2 sources is a required input to air quality models for pollution prediction and mitigation. However, such information has been difficult to obtain for these two countries, as fast-paced changes in economy and environmental regulations have often led to unforeseen emission changes. Here we use satellite observations to show that China and India are on opposite trajectories for sulfurous pollution. Since 2007, emissions in China have declined by 75% while those in India have increased by 50%. With these changes, India is now surpassing China as the world's largest emitter of anthropogenic SO2. This finding, not predicted by emission scenarios, suggests effective SO2 control in China and lack thereof in India. Despite this, haze remains severe in China, indicating the importance of reducing emissions of other pollutants. In India, ~33 million people now live in areas with substantial SO2 pollution. Continued growth in emissions will adversely affect more people and further exacerbate morbidity and mortality.

15.
New Phytol ; 215(4): 1370-1386, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28643848

RESUMO

The maximum photosynthetic carboxylation rate (Vcmax ) is an influential plant trait that has multiple scaling hypotheses, which is a source of uncertainty in predictive understanding of global gross primary production (GPP). Four trait-scaling hypotheses (plant functional type, nutrient limitation, environmental filtering, and plant plasticity) with nine specific implementations were used to predict global Vcmax distributions and their impact on global GPP in the Sheffield Dynamic Global Vegetation Model (SDGVM). Global GPP varied from 108.1 to 128.2 PgC yr-1 , 65% of the range of a recent model intercomparison of global GPP. The variation in GPP propagated through to a 27% coefficient of variation in net biome productivity (NBP). All hypotheses produced global GPP that was highly correlated (r = 0.85-0.91) with three proxies of global GPP. Plant functional type-based nutrient limitation, underpinned by a core SDGVM hypothesis that plant nitrogen (N) status is inversely related to increasing costs of N acquisition with increasing soil carbon, adequately reproduced global GPP distributions. Further improvement could be achieved with accurate representation of water sensitivity and agriculture in SDGVM. Mismatch between environmental filtering (the most data-driven hypothesis) and GPP suggested that greater effort is needed understand Vcmax variation in the field, particularly in northern latitudes.


Assuntos
Dióxido de Carbono/metabolismo , Modelos Biológicos , Fotossíntese , Característica Quantitativa Herdável , Ciclo do Carbono , Internacionalidade , Desenvolvimento Vegetal , Análise de Componente Principal , Estações do Ano , Temperatura
16.
Atmos Meas Tech ; 10(11): 4067-4078, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29456762

RESUMO

Ozone within deep convective clouds is controlled by several factors involving photochemical reactions and transport. Gas-phase photochemical reactions and heterogeneous surface chemical reactions involving ice, water particles, and aerosols inside the clouds all contribute to the distribution and net production and loss of ozone. Ozone in clouds is also dependent on convective transport that carries low troposphere/boundary layer ozone and ozone precursors upward into the clouds. Characterizing ozone in thick clouds is an important step for quantifying relationships of ozone with tropospheric H2O, OH production, and cloud microphysics/transport properties. Although measuring ozone in deep convective clouds from either aircraft or balloon ozonesondes is largely impossible due to extreme meteorological conditions associated with these clouds, it is possible to estimate ozone in thick clouds using backscattered solar UV radiation measured by satellite instruments. Our study combines Aura Ozone Monitoring Instrument (OMI) and Microwave Limb Sounder (MLS) satellite measurements to generate a new research product of monthly-mean ozone concentrations in deep convective clouds between 30°S to 30°N for October 2004 - April 2016. These measurements represent mean ozone concentration primarily in the upper levels of thick clouds and reveal key features of cloud ozone including: persistent low ozone concentrations in the tropical Pacific of ~10 ppbv or less; concentrations of up to 60 pphv or greater over landmass regions of South America, southern Africa, Australia, and India/east Asia; connections with tropical ENSO events; and intra-seasonal/Madden-Julian Oscillation variability. Analysis of OMI aerosol measurements suggests a cause and effect relation between boundary layer pollution and elevated ozone inside thick clouds over land-mass regions including southern Africa and India/east Asia.

17.
Sci Rep ; 6: 39748, 2016 12 23.
Artigo em Inglês | MEDLINE | ID: mdl-28008960

RESUMO

Carbon uptake by terrestrial ecosystems is increasing along with the rising of atmospheric CO2 concentration. Embedded in this trend, recent studies suggested that the interannual variability (IAV) of global carbon fluxes may be dominated by semi-arid ecosystems, but the underlying mechanisms of this high variability in these specific regions are not well known. Here we derive an ensemble of gross primary production (GPP) estimates using the average of three data-driven models and eleven process-based models. These models are weighted by their spatial representativeness of the satellite-based solar-induced chlorophyll fluorescence (SIF). We then use this weighted GPP ensemble to investigate the GPP variability for different aridity regimes. We show that semi-arid regions contribute to 57% of the detrended IAV of global GPP. Moreover, in regions with higher GPP variability, GPP fluctuations are mostly controlled by precipitation and strongly coupled with evapotranspiration (ET). This higher GPP IAV in semi-arid regions is co-limited by supply (precipitation)-induced ET variability and GPP-ET coupling strength. Our results demonstrate the importance of semi-arid regions to the global terrestrial carbon cycle and posit that there will be larger GPP and ET variations in the future with changes in precipitation patterns and dryland expansion.

18.
Sci Rep ; 6: 37747, 2016 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-27886216

RESUMO

Each year, terrestrial ecosystems absorb more than a quarter of the anthropogenic carbon emissions, termed as land carbon sink. An exceptionally large land carbon sink anomaly was recorded in 2011, of which more than half was attributed to Australia. However, the persistence and spatially attribution of this carbon sink remain largely unknown. Here we conducted an observation-based study to characterize the Australian land carbon sink through the novel coupling of satellite retrievals of atmospheric CO2 and photosynthesis and in-situ flux tower measures. We show the 2010-11 carbon sink was primarily ascribed to savannas and grasslands. When all biomes were normalized by rainfall, shrublands however, were most efficient in absorbing carbon. We found the 2010-11 net CO2 uptake was highly transient with rapid dissipation through drought. The size of the 2010-11 carbon sink over Australia (0.97 Pg) was reduced to 0.48 Pg in 2011-12, and was nearly eliminated in 2012-13 (0.08 Pg). We further report evidence of an earlier 2000-01 large net CO2 uptake, demonstrating a repetitive nature of this land carbon sink. Given a significant increasing trend in extreme wet year precipitation over Australia, we suggest that carbon sink episodes will exert greater future impacts on global carbon cycle.

19.
Glob Chang Biol ; 22(10): 3427-43, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27124119

RESUMO

Understanding tropical rainforest carbon exchange and its response to heat and drought is critical for quantifying the effects of climate change on tropical ecosystems, including global climate-carbon feedbacks. Of particular importance for the global carbon budget is net biome exchange of CO2 with the atmosphere (NBE), which represents nonfire carbon fluxes into and out of biomass and soils. Subannual and sub-Basin Amazon NBE estimates have relied heavily on process-based biosphere models, despite lack of model agreement with plot-scale observations. We present a new analysis of airborne measurements that reveals monthly, regional-scale (~1-8 × 10(6)  km(2) ) NBE variations. We develop a regional atmospheric CO2 inversion that provides the first analysis of geographic and temporal variability in Amazon biosphere-atmosphere carbon exchange and that is minimally influenced by biosphere model-based first guesses of seasonal and annual mean fluxes. We find little evidence for a clear seasonal cycle in Amazon NBE but do find NBE sensitivity to aberrations from long-term mean climate. In particular, we observe increased NBE (more carbon emitted to the atmosphere) associated with heat and drought in 2010, and correlations between wet season NBE and precipitation (negative correlation) and temperature (positive correlation). In the eastern Amazon, pulses of increased NBE persisted through 2011, suggesting legacy effects of 2010 heat and drought. We also identify regional differences in postdrought NBE that appear related to long-term water availability. We examine satellite proxies and find evidence for higher gross primary productivity (GPP) during a pulse of increased carbon uptake in 2011, and lower GPP during a period of increased NBE in the 2010 dry season drought, but links between GPP and NBE changes are not conclusive. These results provide novel evidence of NBE sensitivity to short-term temperature and moisture extremes in the Amazon, where monthly and sub-Basin estimates have not been previously available.


Assuntos
Mudança Climática , Ecossistema , Ciclo do Carbono , Dióxido de Carbono , Estações do Ano
20.
Glob Chang Biol ; 22(2): 716-26, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26490834

RESUMO

Large-scale monitoring of crop growth and yield has important value for forecasting food production and prices and ensuring regional food security. A newly emerging satellite retrieval, solar-induced fluorescence (SIF) of chlorophyll, provides for the first time a direct measurement related to plant photosynthetic activity (i.e. electron transport rate). Here, we provide a framework to link SIF retrievals and crop yield, accounting for stoichiometry, photosynthetic pathways, and respiration losses. We apply this framework to estimate United States crop productivity for 2007-2012, where we use the spaceborne SIF retrievals from the Global Ozone Monitoring Experiment-2 satellite, benchmarked with county-level crop yield statistics, and compare it with various traditional crop monitoring approaches. We find that a SIF-based approach accounting for photosynthetic pathways (i.e. C3 and C4 crops) provides the best measure of crop productivity among these approaches, despite the fact that SIF sensors are not yet optimized for terrestrial applications. We further show that SIF provides the ability to infer the impacts of environmental stresses on autotrophic respiration and carbon-use-efficiency, with a substantial sensitivity of both to high temperatures. These results indicate new opportunities for improved mechanistic understanding of crop yield responses to climate variability and change.


Assuntos
Produtos Agrícolas/crescimento & desenvolvimento , Comunicações Via Satélite , Clorofila/metabolismo , Clima , Produtos Agrícolas/metabolismo , Fluorescência , Fotossíntese , Chuva , Luz Solar , Temperatura , Estados Unidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA