Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
mBio ; 15(3): e0019524, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38380921

RESUMO

Sphingofungins are sphinganine analog mycotoxins acting as inhibitors of serine palmitoyl transferases, enzymes responsible for the first step in the sphingolipid biosynthesis. Eukaryotic cells are highly organized with various structures and organelles to facilitate cellular processes and chemical reactions, including the ones occurring as part of the secondary metabolism. We studied how sphingofungin biosynthesis is compartmentalized in the human-pathogenic fungus Aspergillus fumigatus, and we observed that it takes place in the endoplasmic reticulum (ER), ER-derived vesicles, and the cytosol. This implies that sphingofungin and sphingolipid biosynthesis colocalize to some extent. Automated analysis of confocal microscopy images confirmed the colocalization of the fluorescent proteins. Moreover, we demonstrated that the cluster-associated aminotransferase (SphA) and 3-ketoreductase (SphF) play a bifunctional role, supporting sphingolipid biosynthesis, and thereby antagonizing the toxic effects caused by sphingofungin production.IMPORTANCEA balanced sphingolipid homeostasis is critical for the proper functioning of eukaryotic cells. To this end, sphingolipid inhibitors have therapeutic potential against diseases related to the deregulation of sphingolipid balance. In addition, some of them have significant antifungal activity, suggesting that sphingolipid inhibitors-producing fungi have evolved mechanisms to escape self-poisoning. Here, we propose a novel self-defense mechanism, with cluster-associated genes coding for enzymes that play a dual role, being involved in both sphingofungin and sphingolipid production.


Assuntos
Aspergillus fumigatus , Esfingolipídeos , Humanos , Aspergillus fumigatus/genética , Homeostase , Metabolismo dos Lipídeos , Serina/metabolismo
2.
ACS Chem Biol ; 17(2): 386-394, 2022 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-35023724

RESUMO

Sphingofungins belong to a group of structurally related sphingolipid inhibitors produced by fungi, which specifically inhibit serine palmitoyl transferases, enzymes catalyzing the initial step during sphingolipid biosynthesis. Sphingolipids are integral parts of the eukaryotic cell membrane, and disturbances in their homeostasis have been linked to various human diseases. It has been suggested that external interventions, via sphingolipid inhibitors, may represent a promising approach for alternative therapies. Here, we identified and elucidated the biosynthetic gene cluster responsible for the biosynthesis of sphingofungins B, C, and D in Aspergillus fumigatus. Moreover, in vitro analyses have shown that sphingofungin biosynthesis starts with the condensation of a C18 polyketide with the uncommon substrate aminomalonate. Furthermore, the investigations on sphingofungin E and F produced by Paecilomyces variotii pointed out that different aminomalonate derivatives are used as substrates for those chemical variants. This research boosts knowledge on the general biosynthesis of sphingolipid inhibitors in fungi.


Assuntos
Fungos , Esfingolipídeos , Aspergillus fumigatus/metabolismo , Fungos/metabolismo , Humanos , Serina/metabolismo , Esfingolipídeos/metabolismo
3.
mBio ; 11(3)2020 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-32546615

RESUMO

Fumonisin (FB) mycotoxins produced by species of the genus Fusarium detrimentally affect human and animal health upon consumption, due to the inhibition of ceramide synthase. In the present work, we set out to identify mechanisms of self-protection employed by the FB1 producer Fusarium verticillioides FB1 biosynthesis was shown to be compartmentalized, and two cluster-encoded self-protection mechanisms were identified. First, the ATP-binding cassette transporter Fum19 acts as a repressor of the FUM gene cluster. Appropriately, FUM19 deletion and overexpression increased and decreased, respectively, the levels of intracellular and secreted FB1 Second, the cluster genes FUM17 and FUM18 were shown to be two of five ceramide synthase homologs in Fusarium verticillioides, grouping into the two clades CS-I and CS-II in a phylogenetic analysis. The ability of FUM18 to fully complement the yeast ceramide synthase null mutant LAG1/LAC1 demonstrated its functionality, while coexpression of FUM17 and CER3 partially complemented, likely via heterodimer formation. Cell viability assays revealed that Fum18 contributes to the fungal self-protection against FB1 and increases resistance by providing FUM cluster-encoded ceramide synthase activity.IMPORTANCE The biosynthesis of fungal natural products is highly regulated not only in terms of transcription and translation but also regarding the cellular localization of the biosynthetic pathway. In all eukaryotes, the endoplasmic reticulum (ER) is involved in the production of organelles, which are subject to cellular traffic or secretion. Here, we show that in Fusarium verticillioides, early steps in fumonisin production take place in the ER, together with ceramide biosynthesis, which is targeted by the mycotoxin. A first level of self-protection is given by the presence of a FUM cluster-encoded ceramide synthase, Fum18, hitherto uncharacterized. In addition, the final fumonisin biosynthetic step occurs in the cytosol and is thereby spatially separate from the fungal ceramide synthases. We suggest that these strategies help the fungus to avoid self-poisoning during mycotoxin production.


Assuntos
Vias Biossintéticas/genética , Fumonisinas/metabolismo , Fusarium/genética , Regulação Fúngica da Expressão Gênica , Família Multigênica , Oxirredutases/genética , Compartimento Celular , Ceramidas/biossíntese , Retículo Endoplasmático/metabolismo , Fusarium/enzimologia , Genes Fúngicos , Oxirredutases/metabolismo , Filogenia , Esfingolipídeos/antagonistas & inibidores , Esfingolipídeos/biossíntese
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA