Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 112
Filtrar
1.
Cell Rep ; 43(3): 113862, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38446664

RESUMO

Brain functionality relies on finely tuned regulation of gene expression by networks of non-coding RNAs (ncRNAs) such as the one composed by the circular RNA ciRS-7 (also known as CDR1as), the microRNA miR-7, and the long ncRNA Cyrano. We describe ischemia-induced alterations in the ncRNA network both in vitro and in vivo and in transgenic mice lacking ciRS-7 or miR-7. Our data show that cortical neurons downregulate ciRS-7 and Cyrano and upregulate miR-7 expression during ischemia. Mice lacking ciRS-7 exhibit reduced lesion size and motor impairment, while the absence of miR-7 alone results in increased ischemia-induced neuronal death. Moreover, miR-7 levels in pyramidal excitatory neurons regulate neurite morphology and glutamatergic signaling, suggesting a potential molecular link to the in vivo phenotype. Our data reveal the role of ciRS-7 and miR-7 in modulating ischemic stroke outcome, shedding light on the pathophysiological function of intracellular ncRNA networks in the brain.


Assuntos
MicroRNAs , RNA Longo não Codificante , Camundongos , Animais , MicroRNAs/genética , MicroRNAs/metabolismo , RNA não Traduzido , RNA Circular , Transdução de Sinais , RNA Longo não Codificante/metabolismo , Isquemia
2.
Cell Rep ; 42(11): 113386, 2023 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-37948181

RESUMO

Paclitaxel leads to peripheral neuropathy (paclitaxel-induced peripheral neuropathy [PIPN]) in approximately 50% of cancer patients. At present, there are no effective treatment strategies for PIPN, the mechanisms of which also remain unclear. In this study, we performed microbiome and metabolome analysis of feces and serum from breast cancer patients with different PIPN grades due to paclitaxel treatment. Our analysis reveals that levels of deoxycholic acid (DCA) are highly increased because of ingrowth of Clostridium species, which is associated with severe neuropathy. DCA, in turn, elevates serum level of C-C motif ligand 5 (CCL5) and induces CCL5 receptor 5 (CCR5) overexpression in dorsal root ganglion (DRG) through the bile acid receptor Takeda G-protein-coupled receptor 5 (TGR5), contributing to neuronal hyperexcitability. Consistent with this, administration of CCR5 antagonist maraviroc suppresses the development of neuropathic nociception. These results implicate gut microbiota/bile acids/CCR5 signaling in the induction of PIPN, thus suggesting a target for PIPN treatment.


Assuntos
Neoplasias da Mama , Neuralgia , Humanos , Feminino , Paclitaxel/efeitos adversos , Neuralgia/induzido quimicamente , Maraviroc , Ácido Desoxicólico , Receptores CCR5
5.
J Extracell Vesicles ; 12(1): e12297, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36594832

RESUMO

Hypoxia induces changes in the secretion of extracellular vesicles (EVs) in several non-neuronal cells and pathological conditions. EVs are packed with biomolecules, such as microRNA(miR)-21-5p, which respond to hypoxia. However, the true EV association of miR-21-5p, and its functional or biomarker relevance, are inadequately characterised. Neurons are extremely sensitive cells, and it is not known whether the secretion of neuronal EVs and miR-21-5p are altered upon hypoxia. Here, we characterised the temporal EV secretion profile and cell viability of neurons under hypoxia. Hypoxia induced a rapid increase of miR-21a-5p secretion in the EVs, which preceded the elevation of hypoxia-induced tissue or cellular miR-21a-5p. Prolonged hypoxia induced cell death and the release of morphologically distinct EVs. The EVs protected miR-21a-5p from enzymatic degradation but a remarkable fraction of miR-21a-5p remained fragile and non-EV associated. The increase in miR-21a-5p secretion may have biomarker potential, as high blood levels of miR-21-5p in stroke patients were associated with significant disability at hospital discharge. Our data provides an understanding of the dynamic regulation of EV secretion from neurons under hypoxia and provides a candidate for the prediction of recovery from ischemic stroke.


Assuntos
Vesículas Extracelulares , MicroRNAs , Humanos , Vesículas Extracelulares/metabolismo , MicroRNAs/metabolismo , Neurônios/metabolismo , Biomarcadores/metabolismo
6.
Neuroprotection ; 1(2): 84-98, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38223913

RESUMO

The global trend toward aging populations has resulted in an increase in the occurrence of Alzheimer's disease (AD) and associated socioeconomic burdens. Abnormal metabolism of amyloid-ß (Aß) has been proposed as a significant pathomechanism in AD, supported by results of recent clinical trials using anti-Aß antibodies. Nonetheless, the cognitive benefits of the current treatments are limited. The etiology of AD is multifactorial, encompassing Aß and tau accumulation, neuroinflammation, demyelination, vascular dysfunction, and comorbidities, which collectively lead to widespread neurodegeneration in the brain and cognitive impairment. Hence, solely removing Aß from the brain may be insufficient to combat neurodegeneration and preserve cognition. To attain effective treatment for AD, it is necessary to (1) conduct extensive research on various mechanisms that cause neurodegeneration, including advances in neuroimaging techniques for earlier detection and a more precise characterization of molecular events at scales ranging from cellular to the full system level; (2) identify neuroprotective intervention targets against different neurodegeneration mechanisms; and (3) discover novel and optimal combinations of neuroprotective intervention strategies to maintain cognitive function in AD patients. The Alzheimer's Disease Neuroprotection Research Initiative's objective is to facilitate coordinated, multidisciplinary efforts to develop systemic neuroprotective strategies to combat AD. The aim is to achieve mitigation of the full spectrum of pathological processes underlying AD, with the goal of halting or even reversing cognitive decline.

7.
Biomed Res Int ; 2022: 9973232, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36560962

RESUMO

In recent studies, stem cell-based therapy is a potential new approach in the treatment of stroke. The mechanism of human umbilical cord mesenchymal stem cell (hUMSC) transplantation as one of the new approaches in the treatment of ischemic stroke is still unclear. The aim of this study was to determine the traits of immune responses during stroke progression after treatment with human umbilical cord blood MSCs by bioinformatics, to predict potential prognostic biomarkers that could lead to sex differences, and to reveal potential therapeutic targets. The microarray dataset GSE78731 (mRNA profile) of middle cerebral artery occlusion (MCAO) rats was obtained from the Gene Expression Omnibus (GEO) database. First, two potentially expressed genes (DEGs) were screened using the Bioconductor R package. Ultimately, 30 specific DEGs were obtained (22 upregulated and 353 downregulated). Next, bioinformatic analysis was performed on these specific DEGs. We performed a comparison for the differentially expressed genes screened from between the hUMSC and MCAO groups. Gene Ontology enrichment and pathway enrichment analyses were then performed for annotation and visualization. Gene Ontology (GO) functional annotation analysis shows that DEGs are mainly enriched in leukocyte migration, neutrophil activation, neutrophil degranulation, the external side of plasma membrane, cytokine receptor binding, and carbohydrate binding. KEGG pathway enrichment analysis showed that the first 5 enrichment pathways were cytokine-cytokine receptor interaction, chemokine signal pathway, viral protein interaction with cytokine and cytokine receptor, cell adhesion molecules (CAMs), and phagosome. The top 10 key genes of the constructed PPI network were screened, including Cybb, Ccl2, Cd68, Ptprc, C5ar1, Il-1b, Tlr2, Itgb2, Itgax, and Cd44. In summary, hUMSC is likely to be a promising means of treating IS by immunomodulation.


Assuntos
Células-Tronco Mesenquimais , Acidente Vascular Cerebral , Humanos , Feminino , Masculino , Ratos , Animais , Prognóstico , Mapas de Interação de Proteínas/genética , Perfilação da Expressão Gênica , Infarto da Artéria Cerebral Média , Biologia Computacional , Citocinas/genética , Ontologia Genética , NADPH Oxidase 2/genética
8.
Int J Mol Sci ; 23(20)2022 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-36293444

RESUMO

Stroke can be followed by immediate severe headaches. As headaches are initiated by the activation of trigeminal meningeal afferents, we assessed changes in the activity of meningeal afferents in mice subjected to cortical photothrombosis. Cortical photothrombosis induced ipsilateral lesions of variable sizes that were associated with contralateral sensorimotor impairment. Nociceptive firing of mechanosensitive Piezo1 channels, activated by the agonist Yoda1, was increased in meningeal afferents in the ischemic hemispheres. These meningeal afferents also had a higher maximal spike frequency at baseline and during activation of the mechanosensitive Piezo1 channel by Yoda1. Moreover, in these meningeal afferents, nociceptive firing was active during the entire induction of transient receptor potential vanilloid 1 (TRPV1) channels by capsaicin. No such activation was observed on the contralateral hemi-skulls of the same group of mice or in control mice. Our data suggest the involvement of mechanosensitive Piezo1 channels capable of maintaining high-frequency spiking activity and of nociceptive TRPV1 channels in trigeminal headache pain responses after experimental ischemic stroke in mice.


Assuntos
Acidente Vascular Cerebral , Canais de Potencial de Receptor Transitório , Camundongos , Animais , Projetos Piloto , Capsaicina/farmacologia , Cefaleia/patologia , Dor , Canais de Cátion TRPV , Canais Iônicos
9.
Stroke ; 53(10): 3192-3201, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36111544

RESUMO

BACKGROUND: Species-specific differences in astrocytes and their Alzheimer disease-associated pathology may influence cellular responses to other insults. Herein, human glial chimeric mice were generated to evaluate how Alzheimer disease predisposing genetic background in human astrocytes contributes to behavioral outcome and brain pathology after cortical photothrombotic ischemia. METHODS: Neonatal (P0) immunodeficient mice of both sexes were transplanted with induced pluripotent stem cell-derived astrocyte progenitors from Alzheimer disease patients carrying PSEN1 exon 9 deletion (PSEN1 ΔE9), with isogenic controls, with cells from a healthy donor, or with mouse astrocytes or vehicle. After 14 months, a photothrombotic lesion was produced with Rose Bengal in the motor cortex. Behavior was assessed before ischemia and 1 and 4 weeks after the induction of stroke, followed by tissue perfusion for histology. RESULTS: Open field, cylinder, and grid-walking tests showed a persistent locomotor and sensorimotor impairment after ischemia and female mice had larger infarct sizes; yet, these were not affected by astrocytes with PSEN1 ΔE9 background. Staining for human nuclear antigen confirmed that human cells successfully engrafted throughout the mouse brain. However, only a small number of human cells were positive for astrocytic marker GFAP (glial fibrillary acidic protein), mostly located in the corpus callosum and retaining complex human-specific morphology with longer processes compared with host counterparts. While host astrocytes formed the glial scar, human astrocytes were scattered in small numbers close to the lesion boundary. Aß (beta-amyloid) deposits were not present in PSEN1 ΔE9 astrocyte-transplanted mice. CONCLUSIONS: Transplanted human cells survived and distributed widely in the host brain but had no impact on severity of ischemic damage after cortical photothrombosis in chimeric mice. Only a small number of transplanted human astrocytes acquired GFAP-positive glial phenotype or migrated toward the ischemic lesion forming glial scar. PSEN1 ΔE9 astrocytes did not impair behavioral recovery after experimental stroke.


Assuntos
Doença de Alzheimer , Acidente Vascular Cerebral , Animais , Antígenos Nucleares/metabolismo , Astrócitos/patologia , Modelos Animais de Doenças , Feminino , Proteína Glial Fibrilar Ácida/metabolismo , Gliose/metabolismo , Humanos , Isquemia/metabolismo , Masculino , Camundongos , Rosa Bengala/metabolismo , Acidente Vascular Cerebral/patologia
10.
Stroke Vasc Neurol ; 7(5): 381-389, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35577395

RESUMO

BACKGROUND: The brain-gut axis is a major regulator of the central nervous system. We investigated the effects of treatment with broad-spectrum antibiotics on gut and brain inflammation, infarct size and long-term behavioral outcome after cerebral ischemia in rats. METHODS: Rats were treated with broad-spectrum antibiotics (ampicillin, vancomycin, ciprofloxacin, meropenem and metronidazole) for 4 weeks before the endothelin-1 induced ischemia. Treatment continued for 2 weeks until the end of behavioral testing, which included tapered ledged beam-walking, adhesive label test and cylinder test. Gut microbiome, short-chain fatty acids and cytokine levels were measured together with an assessment of infarct size, neuroinflammation and neurogenesis. RESULTS: The results revealed that the antibiotics exerted a clear impact on the gut microbiota. This was associated with a decrease in systemic and brain cytokine levels, infarct size and apoptosis in the perilesional cortex and improved behavioral outcome. CONCLUSION: Our results highlighted the significant relationship between intestinal microbiota and beneficial neuro-recovery after ischemic stroke.


Assuntos
Microbioma Gastrointestinal , Acidente Vascular Cerebral , Animais , Ratos , Ampicilina/farmacologia , Antibacterianos , Ciprofloxacina/farmacologia , Citocinas , Endotelina-1/farmacologia , Ácidos Graxos Voláteis , Infarto/complicações , Meropeném/farmacologia , Metronidazol/farmacologia , Acidente Vascular Cerebral/tratamento farmacológico , Acidente Vascular Cerebral/complicações , Vancomicina/farmacologia
11.
Stroke ; 53(5): 1500-1509, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35468000

RESUMO

Stroke is one of the leading causes of death worldwide and currently only few therapeutic options are available. Stroke is a sexually dimorphic disease contributing to the difficulty in finding efficient treatments. Poststroke neuroinflammation is geared largely by brain microglia and infiltrating peripheral immune cells and largely contributes to sex differences in the outcome of stroke. Microglia, since very early in the development, are sexually divergent, imprinting specific sex-related features. The diversity in terms of microglial density, morphology, and transcriptomic and proteomic profiles between sexes remains in the adulthood and is likely to contribute to the observed sex-differences on the postischemic inflammation. The impact of sexual hormones is fundamental: changes in terms of risk and severity have been observed for females before and after menopause underlining the importance of altered circulating sexual hormones. Moreover, aging is a driving force for changes that interact with sex, shifting the inflammatory response in a sex-dependent manner. This review summarizes the present literature on sex differences in stroke-induced inflammatory responses, with the focus on different microglial responses along lifespan.


Assuntos
Microglia , Acidente Vascular Cerebral , Adulto , Feminino , Hormônios , Humanos , Inflamação/etiologia , Longevidade , Masculino , Proteômica , Caracteres Sexuais , Acidente Vascular Cerebral/complicações
12.
CNS Neurosci Ther ; 28(4): 497-509, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35224865

RESUMO

Perioperative stroke is an ischemic or hemorrhagic cerebral event during or up to 30 days after surgery. It is a feared condition due to a relatively high incidence, difficulties in timely detection, and unfavorable outcome compared to spontaneously occurring stroke. Recent preclinical data suggest that specific pathophysiological mechanisms such as aggravated neuroinflammation contribute to the detrimental impact of perioperative stroke. Conventional treatment options are limited in the perioperative setting due to difficult diagnosis and medications affecting coagulation in may cases. On the contrary, the chance to anticipate cerebrovascular events at the time of surgery may pave the way for prevention strategies. This review provides an overview on perioperative stroke incidence, related problems, and underlying pathophysiological mechanisms. Based on this analysis, we assess experimental stroke treatments including neuroprotective approaches, cell therapies, and conditioning medicine strategies regarding their potential use in perioperative stroke. Interestingly, the specific aspects of perioperative stroke might enable a more effective application of experimental treatment strategies such as classical neuroprotection whereas others including cell therapies may be of limited use. We also discuss experimental diagnostic options for perioperative stroke augmenting classical clinical and imaging stroke diagnosis. While some experimental stroke treatments may have specific advantages in perioperative stroke, the paucity of established guidelines or multicenter clinical research initiatives currently limits their thorough investigation.


Assuntos
Isquemia Encefálica , Acidente Vascular Cerebral , Isquemia Encefálica/complicações , Humanos , Estudos Multicêntricos como Assunto , Neuroproteção , Acidente Vascular Cerebral/diagnóstico , Acidente Vascular Cerebral/etiologia , Acidente Vascular Cerebral/terapia
13.
Pharmacol Ther ; 233: 108030, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-34742778

RESUMO

Stroke is a huge burden on our society and this is expected to grow in the future due to the aging population and the associated co-morbidities. The improvement of acute stroke care has increased the survival rate of stroke patients, and many patients are left with permanent disability, which makes stroke the main cause of adult disability. Unfortunately, many patients face other severe complications such as post-stroke seizures and epilepsy. Acute seizures (ASS) occur within 1 week after the stroke while later occurring unprovoked seizures are diagnosed as post-stroke epilepsy (PSE). Both are associated with a poor prognosis of a functional recovery. The underlying neurobiological mechanisms are complex and poorly understood. There are no universal guidelines on the management of PSE. There is increasing evidence for several risk factors for ASS/PSE, however, the impacts of recanalization, drugs used for secondary prevention of stroke, treatment of stroke co-morbidities and antiseizure medication are currently poorly understood. This review focuses on the common medications that stroke patients are prescribed and potential drug interactions possibly complicating the management of ASS/PSE.


Assuntos
Epilepsia , Acidente Vascular Cerebral , Idoso , Interações Medicamentosas , Epilepsia/tratamento farmacológico , Epilepsia/etiologia , Humanos , Fatores de Risco , Convulsões , Acidente Vascular Cerebral/complicações , Acidente Vascular Cerebral/tratamento farmacológico
14.
Int J Mol Sci ; 22(4)2021 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-33546370

RESUMO

Microglia are involved in the post-stroke immunomodulation of brain plasticity, repair, and reorganization. Here, we evaluated whether adipose-tissue-derived mesenchymal stem cells (ADMSCs) and/or rehabilitation improve behavioral recovery by modulating long-term perilesional inflammation and creating a recovery-permissive environment in a rat model of ischemic stroke. METHODS: A two-way mixed lymphocyte reaction was used to assess the immunomodulatory capacity of ADMSCs in vitro. Two or 7 days after permanent middle cerebral artery occlusion (pMCAO), rats were intravenously administered ADMSCs or vehicle and housed in a standard or enriched environment (EE). Behavioral performance was assessed with a cylinder test, then we performed stereological and ImageJ/Fiji quantifications of ionized calcium-binding adaptor molecule 1 (Iba1) cells and blood-brain barrier (BBB) leakage. RESULTS: Human ADMSCs were immunosuppressive in vitro. The cylinder test showed partial spontaneous behavioral recovery of pMCAO rats, which was further improved by combined ADMSCs and housing in EE on days 21 and 42 (p < 0.05). We detected an ischemia-induced increase in numbers, staining intensity, and branch length of Iba1+ microglia/macrophages as well as BBB leakage in the perilesional cortex. However, these were not different among pMCAO groups. CONCLUSION: Combined cell therapy and rehabilitation additively improved behavioral outcome despite long-term perilesional microglia presence in stroke rats.


Assuntos
Barreira Hematoencefálica , Inflamação , Transplante de Células-Tronco Mesenquimais , Microglia , Acidente Vascular Cerebral/terapia , Animais , Isquemia Encefálica/etiologia , Infarto da Artéria Cerebral Média/complicações , Macrófagos , Masculino , Células-Tronco Mesenquimais , Ratos , Ratos Sprague-Dawley , Acidente Vascular Cerebral/etiologia , Acidente Vascular Cerebral/fisiopatologia , Reabilitação do Acidente Vascular Cerebral
15.
Front Aging Neurosci ; 13: 623751, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33584250

RESUMO

The past decade has brought tremendous progress in diagnostic and therapeutic options for cerebrovascular diseases as exemplified by the advent of thrombectomy in ischemic stroke, benefitting a steeply increasing number of stroke patients and potentially paving the way for a renaissance of neuroprotectants. Progress in basic science has been equally impressive. Based on a deeper understanding of pathomechanisms underlying cerebrovascular diseases, new therapeutic targets have been identified and novel treatment strategies such as pre- and post-conditioning methods were developed. Moreover, translationally relevant aspects are increasingly recognized in basic science studies, which is believed to increase their predictive value and the relevance of obtained findings for clinical application.This review reports key results from some of the most remarkable and encouraging achievements in neurovascular research that have been reported at the 10th International Symposium on Neuroprotection and Neurorepair. Basic science topics discussed herein focus on aspects such as neuroinflammation, extracellular vesicles, and the role of sex and age on stroke recovery. Translational reports highlighted endovascular techniques and targeted delivery methods, neurorehabilitation, advanced functional testing approaches for experimental studies, pre-and post-conditioning approaches as well as novel imaging and treatment strategies. Beyond ischemic stroke, particular emphasis was given on activities in the fields of traumatic brain injury and cerebral hemorrhage in which promising preclinical and clinical results have been reported. Although the number of neutral outcomes in clinical trials is still remarkably high when targeting cerebrovascular diseases, we begin to evidence stepwise but continuous progress towards novel treatment options. Advances in preclinical and translational research as reported herein are believed to have formed a solid foundation for this progress.

16.
J Extracell Vesicles ; 10(1): e12002, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-33304471

RESUMO

Hypoxia is an essential hallmark of several serious diseases such as cardiovascular and metabolic disorders and cancer. A decline in the tissue oxygen level induces hypoxic responses in cells which strive to adapt to the changed conditions. A failure to adapt to prolonged or severe hypoxia can trigger cell death. While some cell types, such as neurons, are highly vulnerable to hypoxia, cancer cells take advantage of a hypoxic environment to undergo tumour growth, angiogenesis and metastasis. Hypoxia-induced processes trigger complex intercellular communication and there are now indications that extracellular vesicles (EVs) play a fundamental role in these processes. Recent developments in EV isolation and characterization methodology have increased the awareness of the importance of EV purity in functional and cargo studies. Cell death, a hallmark of severe hypoxia, is a known source of intracellular contaminants in isolated EVs. In this review, methodological aspects of studies investigating hypoxia-induced EVs are critically evaluated. Key concerns and gaps in the current knowledge are highlighted and future directions for studies are set. To accelerate and advance research, an in-depth analysis of the functions and cargo of hypoxic EVs, compared to normoxic EVs, is provided with the focus on the altered microRNA contents of the EVs.


Assuntos
Comunicação Celular , MicroRNA Circulante/metabolismo , Vesículas Extracelulares/metabolismo , Hipóxia/metabolismo , Neoplasias , RNA Neoplásico/metabolismo , Animais , Humanos , Neoplasias/irrigação sanguínea , Neoplasias/metabolismo
17.
Neurosci Biobehav Rev ; 119: 184-193, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33091416

RESUMO

A novel coronavirus (SARS-CoV-2) emerged from Wuhan, China, and spread quickly around the world. In addition to fever, cough and shortness of breath, it was confirmed that the patients also have manifestations towards the central nervous system (CNS), especially those critically ill ones. In this review, we will discuss how SARS-CoV-2 gain access to the CNS and the possible consequences. Both SARS-CoV-2 and SARS-CoV-1 in 2002 share the same receptor angiotensin-converting enzyme 2 (ACE2), which can be found in the brain and mediate the disease process. Both direct attack of SARS-CoV-2 and the abnormal immune response in the CNS would contribute to the disease. Also, there is a relationship between SARS-CoV-2 and the occurrence of acute cerebrovascular diseases.


Assuntos
COVID-19/virologia , Sistema Nervoso Central/virologia , Coronavirus/patogenicidade , Doenças do Sistema Nervoso/virologia , SARS-CoV-2/patogenicidade , Enzima de Conversão de Angiotensina 2/metabolismo , Humanos
18.
Front Immunol ; 11: 1931, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33042113

RESUMO

Cerebral ischemia may cause irreversible neural network damage and result in functional deficits. Targeting neuronal repair after stroke potentiates the formation of new connections, which can be translated into a better functional outcome. Innate and adaptive immune responses in the brain and the periphery triggered by ischemic damage participate in regulating neural repair after a stroke. Immune cells in the blood circulation and gut lymphatic tissues that have been shaped by immune components including gut microbiota and metabolites can infiltrate the ischemic brain and, once there, influence neuronal regeneration either directly or by modulating the properties of brain-resident immune cells. Immune-related signalings and metabolites from the gut microbiota can also directly alter the phenotypes of resident immune cells to promote neuronal regeneration. In this review, we discuss several potential mechanisms through which peripheral and brain-resident immune components can cooperate to promote first the resolution of neuroinflammation and subsequently to improved neural regeneration and a better functional recovery. We propose that new insights into discovery of regulators targeting pro-regenerative process in this complex neuro-immune network may lead to novel strategies for neuronal regeneration.


Assuntos
Encéfalo/imunologia , Sistema Imunitário/imunologia , Regeneração Nervosa , Neuroimunomodulação , Neurônios/imunologia , Acidente Vascular Cerebral/imunologia , Animais , Encéfalo/metabolismo , Encéfalo/fisiopatologia , Microbioma Gastrointestinal , Humanos , Sistema Imunitário/metabolismo , Sistema Imunitário/fisiopatologia , Neurônios/metabolismo , Recuperação de Função Fisiológica , Transdução de Sinais , Acidente Vascular Cerebral/metabolismo , Acidente Vascular Cerebral/fisiopatologia , Acidente Vascular Cerebral/terapia
20.
Mol Biol Rep ; 47(8): 6247-6258, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32638318

RESUMO

Stroke is one of the main causes of death and disability worldwide. Cell therapy represents a promising therapeutic approach to improve stroke outcome. Measurement of blood-based biomarkers might serve as a proof-of-concept to monitor the mechanisms undergirding these treatments, and such compounds could be used as surrogate biomarkers to monitor the safety and efficacy of cell therapies in the future. Additionally, the measurement of biomarkers that correlate with circulating stem cells in observational studies might be of interest to improve the understanding of how these cells are spontaneously mobilized and carry out their action after stroke. Thus, a systematic review has been herein performed on blood-based biomarkers assessed in stroke patients treated with cell therapy or in observational studies in which circulating stem cells have been measured after stroke.


Assuntos
Transplante de Células-Tronco , Acidente Vascular Cerebral/sangue , Acidente Vascular Cerebral/terapia , Animais , Biomarcadores/sangue , Ensaios Clínicos como Assunto , Humanos , Estudos Observacionais como Assunto , Transplante de Células-Tronco/efeitos adversos , Transplante de Células-Tronco/métodos , Células-Tronco/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA