RESUMO
INTRODUCTION: Multi-etiology dementia necessitates in-vivo markers of copathologies including misfolded α -synuclein (syn). We measured misfolded syn aggregates (syn-seeds) via qualitative seed amplifcation assays (synSAA) and examined relationships with markers of Alzheimer's disease (AD). METHODS: Cerebrospinal fluid (CSF) was obtained from 420 participants in two Wisconsin AD risk cohorts (35% male; 91% cognitively unimpaired; mean (SD) age, 65.42 (7.78) years; education, 16.17 (2.23) years). synSAA results were compared to phosphorylated tau (T), beta amyloid (A), and clinical outcomes. Longitudinal cognition was modeled with mixed effects. RESULTS: Syn positivity (synSAA+) co-occurred with T (in synSAA+ vs synSAA-, 36% vs 20% T+; p=0.011) and with cognitive impairment (10% vs 7% MCI; 10% vs 0% dementia; p=0.00050). synSAA+ participants' cognitive performance declined â¼40% faster than synSAA-for Digit Symbol, but not other tests. DISCUSSION: Findings support prevalent syn copathology in a mostly-unimpaired AD risk cohort. Future work will explore relationships with disease progression.
RESUMO
INTRODUCTION: Understanding longitudinal change in key plasma biomarkers will aid in detecting presymptomatic Alzheimer's disease (AD). METHODS: Serial plasma samples from 424 Wisconsin Registry for Alzheimer's Prevention participants were analyzed for phosphorylated-tau217 (p-tau217; ALZpath) and other AD biomarkers, to study longitudinal trajectories in relation to disease, health factors, and cognitive decline. Of the participants, 18.6% with known amyloid status were amyloid positive (A+); 97.2% were cognitively unimpaired (CU). RESULTS: In the CU, amyloid-negative (A-) subset, plasma p-tau217 levels increased modestly with age but were unaffected by body mass index and kidney function. In the whole sample, average p-tau217 change rates were higher in those who were A+ (e.g., simple slopes(se) for A+ and A- at age 60 were 0.232(0.028) and 0.038(0.013))). High baseline p-tau217 levels predicted faster preclinical cognitive decline. DISCUSSION: p-tau217 stands out among markers for its strong association with disease and cognitive decline, indicating its potential for early AD detection and monitoring progression. HIGHLIGHTS: Phosphorylated-tau217 (p-tau217) trajectories were significantly different in people who were known to be amyloid positive. Subtle age-related trajectories were seen for all the plasma markers in amyloid-negative cognitively unimpaired. Kidney function and body mass index were not associated with plasma p-tau217 trajectories. Higher plasma p-tau217 was associated with faster preclinical cognitive decline.
Assuntos
Doença de Alzheimer , Biomarcadores , Proteínas tau , Humanos , Proteínas tau/sangue , Doença de Alzheimer/sangue , Doença de Alzheimer/diagnóstico , Masculino , Biomarcadores/sangue , Feminino , Idoso , Fosforilação , Estudos Longitudinais , Pessoa de Meia-Idade , Disfunção Cognitiva/sangue , Disfunção Cognitiva/diagnóstico , Progressão da DoençaRESUMO
Plasma p-tau217 and Tau-PET are strong prognostic biomarkers in Alzheimer's disease (AD), but their relative performance in predicting future cognitive decline among cognitively unimpaired (CU) individuals is unclear. In this head-to-head comparison study including 9 cohorts and 1534 individuals, we found that plasma p-tau217 and medial temporal lobe Tau-PET signal showed similar associations with cognitive decline on a global cognitive composite test (R2 PET=0.32 vs R2 PLASMA=0.32, pdifference=0.812) and with progression to mild cognitive impairment (Hazard ratio[HR]PET=1.56[1.43-1.70] vs HRPLASMA=1.63[1.50-1.77], pdifference=0.627). Combined plasma and PET models were superior to the single biomarker models (R2=0.36, p<0.01). Furthermore, sequential selection using plasma p-tau217 and then Tau-PET reduced the number of participants required for a clinical trial by 94%, compared to a 75% reduction when using plasma p-tau217 alone. We conclude that plasma p-tau217 and Tau-PET showed similar performance for predicting future cognitive decline in CU individuals, and their sequential use (i.e., plasma p-tau217 followed by Tau-PET in a subset with high plasma p-tau217) is useful for screening in clinical trials in preclinical AD.
RESUMO
BACKGROUND: The sensitivity of amyloid to pre-analytic factors complicates cerebrospinal fluid (CSF) diagnostics for Alzheimer disease. We report reliability and validity evidence for automated immunoassays from frozen and fresh CSF samples in an ongoing, single-site research program. METHODS: CSF samples were obtained from 2 Wisconsin cohorts (1256 measurements; 727 participants). Levels of amyloid beta 1-42 (Aß42), phosphorylated tau 181 (pTau181), and total tau (tTau) were obtained using an Elecsys cobas e 601 platform. Repeatability and fixed effects of storage tube type, extraction method, and freezing were assessed via mixed models. Concordance with amyloid positron emission tomography (PET) was investigated with 238 participants having a temporally proximal PET scan. RESULTS: Repeatability was high with intraclass correlation (ICC) ≥0.9, but tube type strongly affected measurements. Discriminative accuracy for PET amyloid positivity was strong across tube types (area under the curve [AUC]: Aß42, 0.87; pTau181Aß42 , 0.96), although optimal thresholds differed. CONCLUSIONS: Under real-world conditions, the Elecsys platform had high repeatability. However, strong effects of pre-analytic factors suggest caution in drawing longitudinal inferences.
Assuntos
Doença de Alzheimer , Humanos , Doença de Alzheimer/diagnóstico , Doença de Alzheimer/líquido cefalorraquidiano , Peptídeos beta-Amiloides/líquido cefalorraquidiano , Reprodutibilidade dos Testes , Proteínas tau/líquido cefalorraquidiano , Tomografia por Emissão de Pósitrons , Biomarcadores/líquido cefalorraquidiano , Fragmentos de Peptídeos/líquido cefalorraquidianoRESUMO
INTRODUCTION: Published norms are typically cross-sectional and often are not sensitive to preclinical cognitive changes due to dementia. We developed and validated demographically adjusted cross-sectional and longitudinal normative standards using harmonized outcomes from two Alzheimer's disease (AD) risk-enriched cohorts. METHODS: Data from the Wisconsin Registry for Alzheimer's Prevention and the Wisconsin Alzheimer's Disease Research Center were combined. Quantile regression was used to develop unconditional (cross-sectional) and conditional (longitudinal) normative standards for 18 outcomes using data from cognitively unimpaired participants (N = 1390; mean follow-up = 9.25 years). Validity analyses (N = 2456) examined relationships between percentile scores (centiles), consensus-based cognitive statuses, and AD biomarker levels. RESULTS: Unconditional and conditional centiles were lower in those with consensus-based impairment or biomarker positivity. Similarly, quantitative biomarker levels were higher in those whose centiles suggested decline. DISCUSSION: This study presents normative standards for cognitive measures sensitive to pre-clinical changes. Future directions will investigate potential clinical applications of longitudinal normative standards. HIGHLIGHTS: Quantile regression was used to construct longitudinal norms for cognitive tests. Poorer percentile scores were related to concurrent diagnosis and Alzheimer's disease biomarkers. A ShinyApp was built to display test scores and norms and flag low performance.
Assuntos
Doença de Alzheimer , Biomarcadores , Testes Neuropsicológicos , Humanos , Doença de Alzheimer/diagnóstico , Masculino , Idoso , Feminino , Testes Neuropsicológicos/normas , Testes Neuropsicológicos/estatística & dados numéricos , Estudos Longitudinais , Wisconsin , Estudos Transversais , Disfunção Cognitiva/diagnóstico , Estudos de Coortes , Cognição/fisiologia , Idoso de 80 Anos ou mais , Pessoa de Meia-IdadeRESUMO
Neurovascular 4D-Flow MRI enables non-invasive evaluation of cerebral hemodynamics including measures of cerebral blood flow (CBF), vessel pulsatility index (PI), and cerebral pulse wave velocity (PWV). 4D-Flow measures have been linked to various neurovascular disorders including small vessel disease and Alzheimer's disease; however, physiological and technical sources of variability are not well established. Here, we characterized sources of diurnal physiological and technical variability in cerebral hemodynamics using 4D-Flow in a retrospective study of cognitively unimpaired older adults (N = 750) and a prospective study of younger adults (N = 10). Younger participants underwent repeated MRI sessions at 7am, 4 pm, and 10 pm. In the older cohort, having an MRI earlier on the day was significantly associated with higher CBF and lower PI. In prospective experiments, time of day significantly explained variability in CBF and PI; however, not in PWV. Test-retest experiments showed high CBF intra-session repeatability (repeatability coefficient (RPC) =7.2%), compared to lower diurnal repeatability (RPC = 40%). PI and PWV displayed similar intra-session and diurnal variability (PI intra-session RPC = 22%, RPC = 24% 7am vs 4 pm; PWV intra-session RPC = 17%, RPC = 21% 7am vs 4 pm). Overall, CBF measures showed low technical variability, supporting diurnal variability is from physiology. PI and PWV showed higher technical variability but less diurnal variability.
Assuntos
Circulação Cerebrovascular , Ritmo Circadiano , Hemodinâmica , Imageamento por Ressonância Magnética , Humanos , Circulação Cerebrovascular/fisiologia , Masculino , Feminino , Idoso , Imageamento por Ressonância Magnética/métodos , Ritmo Circadiano/fisiologia , Hemodinâmica/fisiologia , Adulto , Estudos Retrospectivos , Estudos Prospectivos , Análise de Onda de Pulso/métodos , Adulto Jovem , Pessoa de Meia-Idade , Velocidade do Fluxo Sanguíneo/fisiologia , Idoso de 80 Anos ou mais , Encéfalo/diagnóstico por imagem , Encéfalo/irrigação sanguínea , Encéfalo/fisiologia , Fluxo Pulsátil/fisiologiaRESUMO
Neuropsychological measures sensitive to decline in the preclinical phase of Alzheimer's disease are needed. We previously demonstrated that higher amyloid-beta (Aß) assessed by positron emission tomography in adults without cognitive impairment was associated with recall of fewer proper names in Logical Memory story recall. The current study investigated the association between proper names and cerebrospinal fluid biomarkers (Aß42/40, phosphorylated tau181 [pTau181], neurofilament light) in 223 participants from the Wisconsin Registry for Alzheimer's Prevention. We assessed associations between biomarkers and delayed Logical Memory total score and proper names using binary logistic regressions. Sensitivity analyses used multinomial logistic regression and stratified biomarker groups. Lower Logical Memory total score and proper names scores from the most recent visit were associated with biomarker positivity. Relatedly, there was a 27% decreased risk of being classified Aß42/40+/pTau181+ for each additional proper name recalled. A linear mixed effects model found that longitudinal change in proper names recall was predicted by biomarker status. These results demonstrate a novel relationship between proper names and Alzheimer's disease-cerebrospinal fluid pathology.
Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Humanos , Doença de Alzheimer/patologia , Proteínas tau/líquido cefalorraquidiano , Estudos Longitudinais , Progressão da Doença , Disfunção Cognitiva/psicologia , Peptídeos beta-Amiloides/líquido cefalorraquidiano , Biomarcadores/líquido cefalorraquidiano , Fragmentos de Peptídeos/líquido cefalorraquidianoRESUMO
Cognitive decline in Alzheimer's disease and other dementias typically begins long before clinical impairment. Identifying people experiencing subclinical decline may facilitate earlier intervention. This study developed cognitive trajectory clusters using longitudinally based random slope and change point parameter estimates from a Preclinical Alzheimer's disease Cognitive Composite and examined how baseline and most recently available clinical/health-related characteristics, cognitive statuses and biomarkers for Alzheimer's disease and vascular disease varied across these cognitive clusters. Data were drawn from the Wisconsin Registry for Alzheimer's Prevention, a longitudinal cohort study of adults from late midlife, enriched for a parental history of Alzheimer's disease and without dementia at baseline. Participants who were cognitively unimpaired at the baseline visit with ≥3 cognitive visits were included in trajectory modelling (n = 1068). The following biomarker data were available for subsets: positron emission tomography amyloid (amyloid: n = 367; [11C]Pittsburgh compound B (PiB): global PiB distribution volume ratio); positron emission tomography tau (tau: n = 321; [18F]MK-6240: primary regions of interest meta-temporal composite); MRI neurodegeneration (neurodegeneration: n = 581; hippocampal volume and global brain atrophy); T2 fluid-attenuated inversion recovery MRI white matter ischaemic lesion volumes (vascular: white matter hyperintensities; n = 419); and plasma pTau217 (n = 165). Posterior median estimate person-level change points, slopes' pre- and post-change point and estimated outcome (intercepts) at change point for cognitive composite were extracted from Bayesian Bent-Line Regression modelling and used to characterize cognitive trajectory groups (K-means clustering). A common method was used to identify amyloid/tau/neurodegeneration/vascular biomarker thresholds. We compared demographics, last visit cognitive status, health-related factors and amyloid/tau/neurodegeneration/vascular biomarkers across the cognitive groups using ANOVA, Kruskal-Wallis, χ2, and Fisher's exact tests. Mean (standard deviation) baseline and last cognitive assessment ages were 58.4 (6.4) and 66.6 (6.6) years, respectively. Cluster analysis identified three cognitive trajectory groups representing steep, n = 77 (7.2%); intermediate, n = 446 (41.8%); and minimal, n = 545 (51.0%) cognitive decline. The steep decline group was older, had more females, APOE e4 carriers and mild cognitive impairment/dementia at last visit; it also showed worse self-reported general health-related and vascular risk factors and higher amyloid, tau, neurodegeneration and white matter hyperintensity positive proportions at last visit. Subtle cognitive decline was consistently evident in the steep decline group and was associated with generally worse health. In addition, cognitive trajectory groups differed on aetiology-informative biomarkers and risk factors, suggesting an intimate link between preclinical cognitive patterns and amyloid/tau/neurodegeneration/vascular biomarker differences in late middle-aged adults. The result explains some of the heterogeneity in cognitive performance within cognitively unimpaired late middle-aged adults.
RESUMO
(1) Smoking is the most significant preventable health hazard in the modern world. It increases the risk of vascular problems, which are also risk factors for dementia. In addition, toxins in cigarettes increase oxidative stress and inflammation, which have both been linked to the development of Alzheimer's disease and related dementias (ADRD). This study identified potential mechanisms of the smoking-cognitive function relationship using metabolomics data from the longitudinal Wisconsin Registry for Alzheimer's Prevention (WRAP). (2) 1266 WRAP participants were included to assess the association between smoking status and four cognitive composite scores. Next, untargeted metabolomic data were used to assess the relationships between smoking and metabolites. Metabolites significantly associated with smoking were then tested for association with cognitive composite scores. Total effect models and mediation models were used to explore the role of metabolites in smoking-cognitive function pathways. (3) Plasma N-acetylneuraminate was associated with smoking status Preclinical Alzheimer Cognitive Composite 3 (PACC3) and Immediate Learning (IMM). N-acetylneuraminate mediated 12% of the smoking-PACC3 relationship and 13% of the smoking-IMM relationship. (4) These findings provide links between previous studies that can enhance our understanding of potential biological pathways between smoking and cognitive function.
RESUMO
BACKGROUND: As Alzheimer disease (AD) biomarker testing becomes more widely available, adults may opt to learn results. Considering potential reactions to learning biomarker results can guide prebiomarker and postbiomarker testing education and counseling programs. METHODS: Cognitively healthy adults enrolled in observational Alzheimer research responded to a telephone survey about learning AD risk information (n=334; 44% Black or African American; mean age=64.9±7.0). Multiple linear regression models tested if contextual factors predicted anticipated psychological impact (distress, stigma, and cognitive symptoms) or behavior change (planning and risk-reduction). Secondary analyses tested for differences in relationships by racial identity. RESULTS: Internal health locus of control, concern about AD, self-identified sex, education, family dementia history, and belief in AD modifiability predicted anticipated psychological impact. Concern about AD, age, racial identity, belief in AD modifiability, research attitudes, and exposure to brain health-related social norms predicted anticipated behavior change. For Black respondents, there were no sex differences in anticipated distress, whereas there were stronger relationships between health locus of control, brain health social norms, and education on outcomes compared with White respondents. CONCLUSIONS: Results may inform personalized and culturally tailored biomarker testing education and counseling to minimize psychological impacts and increase behavior change related to learning AD risk information.
Assuntos
Doença de Alzheimer , Adulto , Humanos , Pessoa de Meia-Idade , Idoso , Doença de Alzheimer/diagnóstico , Doença de Alzheimer/psicologia , Atitude , Escolaridade , BiomarcadoresRESUMO
Importance: Knowledge is lacking on the prevalence and prognosis of individuals with a ß-amyloid-negative, tau-positive (A-T+) cerebrospinal fluid (CSF) biomarker profile. Objective: To estimate the prevalence of a CSF A-T+ biomarker profile and investigate its clinical implications. Design, Setting, and Participants: This was a retrospective cohort study of the cross-sectional multicenter University of Gothenburg (UGOT) cohort (November 2019-January 2021), the longitudinal multicenter Alzheimer Disease Neuroimaging Initiative (ADNI) cohort (individuals with mild cognitive impairment [MCI] and no cognitive impairment; September 2005-May 2022), and 2 Wisconsin cohorts, Wisconsin Alzheimer Disease Research Center and Wisconsin Registry for Alzheimer Prevention (WISC; individuals without cognitive impairment; February 2007-November 2020). This was a multicenter study, with data collected from referral centers in clinical routine (UGOT) and research settings (ADNI and WISC). Eligible individuals had 1 lumbar puncture (all cohorts), 2 or more cognitive assessments (ADNI and WISC), and imaging (ADNI only) performed on 2 separate occasions. Data were analyzed on August 2022 to April 2023. Exposures: Baseline CSF Aß42/40 and phosphorylated tau (p-tau)181; cognitive tests (ADNI: modified preclinical Alzheimer cognitive composite [mPACC]; WISC: modified 3-test PACC [PACC-3]). Exposures in the ADNI cohort included [18F]-florbetapir amyloid positron emission tomography (PET), magnetic resonance imaging (MRI), [18F]-fluorodeoxyglucose PET (FDG-PET), and cross-sectional tau-PET (ADNI: [18F]-flortaucipir, WISC: [18F]-MK6240). Main Outcomes and Measures: Primary outcomes were the prevalence of CSF AT biomarker profiles and continuous longitudinal global cognitive outcome and imaging biomarker trajectories in A-T+ vs A-T- groups. Secondary outcomes included cross-sectional tau-PET. Results: A total of 7679 individuals (mean [SD] age, 71.0 [8.4] years; 4101 male [53%]) were included in the UGOT cohort, 970 individuals (mean [SD] age, 73 [7.0] years; 526 male [54%]) were included in the ADNI cohort, and 519 individuals (mean [SD] age, 60 [7.3] years; 346 female [67%]) were included in the WISC cohort. The prevalence of an A-T+ profile in the UGOT cohort was 4.1% (95% CI, 3.7%-4.6%), being less common than the other patterns. Longitudinally, no significant differences in rates of worsening were observed between A-T+ and A-T- profiles for cognition or imaging biomarkers. Cross-sectionally, A-T+ had similar tau-PET uptake to individuals with an A-T- biomarker profile. Conclusion and Relevance: Results suggest that the CSF A-T+ biomarker profile was found in approximately 5% of lumbar punctures and was not associated with a higher rate of cognitive decline or biomarker signs of disease progression compared with biomarker-negative individuals.
RESUMO
BACKGROUND: Genetic scores for late-onset Alzheimer's disease (LOAD) have been associated with preclinical cognitive decline and biomarker variations. Compared with an overall polygenic risk score (PRS), a pathway-specific PRS (p-PRS) may be more appropriate in predicting a specific biomarker or cognitive component underlying LOAD pathology earlier in the lifespan. OBJECTIVE: In this study, we leveraged longitudinal data from the Wisconsin Registry for Alzheimer's Prevention and explored changing patterns in cognition and biomarkers at various age points along six biological pathways. METHODS: PRS and p-PRSs with and without APOE were constructed separately based on the significant SNPs associated with LOAD in a recent genome-wide association study meta-analysis and compared to APOE alone. We used a linear mixed-effects model to assess the association between PRS/p-PRSs and cognitive trajectories among 1,175 individuals. We also applied the model to the outcomes of cerebrospinal fluid biomarkers in a subset. Replication analyses were performed in an independent sample. RESULTS: We found p-PRSs and the overall PRS can predict preclinical changes in cognition and biomarkers. The effects of PRS/p-PRSs on rate of change in cognition, amyloid-ß, and tau outcomes are dependent on age and appear earlier in the lifespan when APOE is included in these risk scores compared to when APOE is excluded. CONCLUSION: In addition to APOE, the p-PRSs can predict age-dependent changes in amyloid-ß, tau, and cognition. Once validated, they could be used to identify individuals with an elevated genetic risk of accumulating amyloid-ß and tau, long before the onset of clinical symptoms.
Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Humanos , Doença de Alzheimer/diagnóstico , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/líquido cefalorraquidiano , Apolipoproteínas E/genética , Biomarcadores/líquido cefalorraquidiano , Cognição , Disfunção Cognitiva/diagnóstico , Disfunção Cognitiva/genética , Disfunção Cognitiva/metabolismo , Estudo de Associação Genômica Ampla , Fatores de Risco , Proteínas tau/genética , Proteínas tau/líquido cefalorraquidianoRESUMO
INTRODUCTION: A hallmark of Alzheimer's disease (AD) is the aggregation of proteins (amyloid beta [A] and hyperphosphorylated tau [T]) in the brain, making cerebrospinal fluid (CSF) proteins of particular interest. METHODS: We conducted a CSF proteome-wide analysis among participants of varying AT pathology (n = 137 participants; 915 proteins) with nine CSF biomarkers of neurodegeneration and neuroinflammation. RESULTS: We identified 61 proteins significantly associated with the AT category (P < 5.46 × 10-5 ) and 636 significant protein-biomarker associations (P < 6.07 × 10-6 ). Proteins from glucose and carbon metabolism pathways were enriched among amyloid- and tau-associated proteins, including malate dehydrogenase and aldolase A, whose associations with tau were replicated in an independent cohort (n = 717). CSF metabolomics identified and replicated an association of succinylcarnitine with phosphorylated tau and other biomarkers. DISCUSSION: These results implicate glucose and carbon metabolic dysregulation and increased CSF succinylcarnitine levels with amyloid and tau pathology in AD. HIGHLIGHTS: Cerebrospinal fluid (CSF) proteome enriched for extracellular, neuronal, immune, and protein processing. Glucose/carbon metabolic pathways enriched among amyloid/tau-associated proteins. Key glucose/carbon metabolism protein associations independently replicated. CSF proteome outperformed other omics data in predicting amyloid/tau positivity. CSF metabolomics identified and replicated a succinylcarnitine-phosphorylated tau association.
Assuntos
Doença de Alzheimer , Humanos , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/metabolismo , Proteoma , Proteínas tau/líquido cefalorraquidiano , Amiloide/metabolismo , Biomarcadores/líquido cefalorraquidiano , Metaboloma , Fragmentos de Peptídeos/líquido cefalorraquidianoRESUMO
An accurate blood test for Alzheimer's disease that is sensitive to preclinical proteinopathy and cognitive decline has clear implications for early detection and secondary prevention. We assessed the performance of plasma phosphorylated tau 217 ( pTa u 217 ) against brain PET markers of amyloid [ [ 11 C ] -labelled Pittsburgh compound B (PiB)] and tau ( [ 18 F ] MK-6240) and its utility for predicting longitudinal cognition. Samples were analysed from a subset of participants with up to 8 years follow-up in the Wisconsin Registry for Alzheimer's Prevention (WRAP; 2001-present; plasma 2011-present), a longitudinal cohort study of adults from midlife, enriched for parental history of Alzheimer's disease. Participants were a convenience sample who volunteered for at least one PiB scan, had usable banked plasma and were cognitively unimpaired at first plasma collection. Study personnel who interacted with participants or samples were blind to amyloid status. We used mixed effects models and receiver-operator characteristic curves to assess concordance between plasma pTa u 217 and PET biomarkers of Alzheimer's disease and mixed effects models to understand the ability of plasma pTa u 217 to predict longitudinal performance on WRAP's preclinical Alzheimer's cognitive composite (PACC-3). The primary analysis included 165 people (108 women; mean age = 62.9 ± 6.06; 160 still enrolled; 2 deceased; 3 discontinued). Plasma pTa u 217 was strongly related to PET-based estimates of concurrent brain amyloid ( ß ^ = 0.83 (0.75, 0.90), P < 0.001). Concordance was high between plasma pTa u 217 and both amyloid PET (area under the curve = 0.91, specificity = 0.80, sensitivity = 0.85, positive predictive value = 0.58, negative predictive value = 0.94) and tau PET (area under the curve = 0.95, specificity = 1, sensitivity = 0.85, positive predictive value = 1, negative predictive value = 0.98). Higher baseline pTa u 217 levels were associated with worse cognitive trajectories ( ß ^ p T a u × a g e = -0.07 (-0.09, -0.06), P < 0.001). In a convenience sample of unimpaired adults, plasma pTa u 217 levels correlate well with concurrent brain Alzheimer's disease pathophysiology and with prospective cognitive performance. These data indicate that this marker can detect disease before clinical signs and thus may disambiguate presymptomatic Alzheimer's disease from normal cognitive ageing.
RESUMO
Importance: Postmenopausal females represent around 70% of all individuals with Alzheimer disease. Previous literature shows elevated levels of tau in cognitively unimpaired postmenopausal females compared with age-matched males, particularly in the setting of high ß-amyloid (Aß). The biological mechanisms associated with higher tau deposition in female individuals remain elusive. Objective: To examine the extent to which sex, age at menopause, and hormone therapy (HT) use are associated with regional tau at a given level of Aß, both measured with positron emission tomography (PET). Design, Setting, and Participants: This cross-sectional study included participants enrolled in the Wisconsin Registry for Alzheimer Prevention. Cognitively unimpaired males and females with at least 1 18F-MK-6240 and 11C-Pittsburgh compound B PET scan were analyzed. Data were collected between November 2006 and May 2021. Exposures: Premature menopause (menopause at younger than 40 years), early menopause (menopause at age 40-45 years), and regular menopause (menopause at older than 45 years) and HT user (current/past use) and HT nonuser (no current/past use). Exposures were self-reported. Main Outcomes and Measures: Seven tau PET regions that show sex differences across temporal, parietal, and occipital lobes. Primary analyses examined the interaction of sex, age at menopause or HT, and Aß PET on regional tau PET in a series of linear regressions. Secondary analyses investigated the influence of HT timing in association with age at menopause on regional tau PET. Results: Of 292 cognitively unimpaired individuals, there were 193 females (66.1%) and 99 males (33.9%). The mean (range) age at tau scan was 67 (49-80) years, 52 (19%) had abnormal Aß, and 106 (36.3%) were APOEε4 carriers. There were 98 female HT users (52.2%) (past/current). Female sex (standardized ß = -0.41; 95% CI, -0.97 to -0.32; P < .001), earlier age at menopause (standardized ß = -0.38; 95% CI, -0.14 to -0.09; P < .001), and HT use (standardized ß = 0.31; 95% CI, 0.40-1.20; P = .008) were associated with higher regional tau PET in individuals with elevated Aß compared with male sex, later age at menopause, and HT nonuse. Affected regions included medial and lateral regions of the temporal and occipital lobes. Late initiation of HT (>5 years following age at menopause) was associated with higher tau PET compared with early initiation (ß = 0.49; 95% CI, 0.27-0.43; P = .001). Conclusions and Relevance: In this study, females exhibited higher tau compared with age-matched males, particularly in the setting of elevated Aß. In females, earlier age at menopause and late initiation of HT were associated with increased tau vulnerability especially when neocortical Aß elevated. These observational findings suggest that subgroups of female individuals may be at higher risk of pathological burden.
Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Humanos , Masculino , Feminino , Adulto , Pessoa de Meia-Idade , Peptídeos beta-Amiloides/metabolismo , Proteínas tau/metabolismo , Estudos Transversais , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Tomografia por Emissão de Pósitrons , Menopausa , HormôniosRESUMO
Background Characterizing cerebrovascular hemodynamics in older adults is important for identifying disease and understanding normal neurovascular aging. Four-dimensional (4D) flow MRI allows for a comprehensive assessment of cerebral hemodynamics in a single acquisition. Purpose To establish reference intracranial blood flow and pulsatility index values in a large cross-sectional sample of middle-aged (45-65 years) and older (>65 years) adults and characterize the effect of age and sex on blood flow and pulsatility. Materials and Methods In this retrospective study, patients aged 45-93 years (cognitively unimpaired) underwent cranial 4D flow MRI between March 2010 and March 2020. Blood flow rates and pulsatility indexes from 13 major arteries and four venous sinuses and total cerebral blood flow were collected. Intraobserver and interobserver reproducibility of flow and pulsatility measures was assessed in 30 patients. Descriptive statistics (mean ± SD) of blood flow and pulsatility were tabulated for the entire group and by age and sex. Multiple linear regression and linear mixed-effects models were used to assess the effect of age and sex on total cerebral blood flow and vessel-specific flow and pulsatility, respectively. Results There were 759 patients (mean age, 65 years ± 8 [SD]; 506 female patients) analyzed. For intra- and interobserver reproducibility, median intraclass correlation coefficients were greater than 0.90 for flow and pulsatility measures across all vessels. Regression coefficients ß ± standard error from multiple linear regression showed a 4 mL/min decrease in total cerebral blood flow each year (age ß = -3.94 mL/min per year ± 0.44; P < .001). Mixed effects showed a 1 mL/min average annual decrease in blood flow (age ß = -0.95 mL/min per year ± 0.16; P < .001) and 0.01 arbitrary unit (au) average annual increase in pulsatility over all vessels (age ß = 0.011 au per year ± 0.001; P < .001). No evidence of sex differences was observed for flow (ß = -1.60 mL/min per male patient ± 1.77; P = .37), but pulsatility was higher in female patients (sex ß = -0.018 au per male patient ± 0.008; P = .02). Conclusion Normal reference values for blood flow and pulsatility obtained using four-dimensional flow MRI showed correlations with age. © RSNA, 2023 Supplemental material is available for this article. See also the editorial by Steinman in this issue.
Assuntos
Artérias Cerebrais , Circulação Cerebrovascular , Cavidades Cranianas , Hemodinâmica , Imageamento por Ressonância Magnética , Humanos , Pessoa de Meia-Idade , Envelhecimento , Idoso , Velocidade do Fluxo Sanguíneo/fisiologia , Imageamento por Ressonância Magnética/métodos , Estudos Transversais , Masculino , Feminino , Idoso de 80 Anos ou mais , Estudos Retrospectivos , Cavidades Cranianas/diagnóstico por imagem , Artérias Cerebrais/diagnóstico por imagemRESUMO
Importance: Alzheimer disease (AD) pathology starts with a prolonged phase of ß-amyloid (Aß) accumulation without symptoms. The duration of this phase differs greatly among individuals. While this disease phase has high relevance for clinical trial designs, it is currently unclear how to best predict the onset of clinical progression. Objective: To evaluate combinations of different plasma biomarkers for predicting cognitive decline in Aß-positive cognitively unimpaired (CU) individuals. Design, Setting, and Participants: This prospective population-based prognostic study evaluated data from 2 prospective longitudinal cohort studies (the Swedish BioFINDER-1 and the Wisconsin Registry for Alzheimer Prevention [WRAP]), with data collected from February 8, 2010, to October 21, 2020, for the BioFINDER-1 cohort and from August 11, 2011, to June 27, 2021, for the WRAP cohort. Participants were CU individuals recruited from memory clinics who had brain Aß pathology defined by cerebrospinal fluid (CSF) Aß42/40 in the BioFINDER-1 study and by Pittsburgh Compound B (PiB) positron emission tomography (PET) in the WRAP study. A total of 564 eligible Aß-positive and Aß-negative CU participants with available relevant data from the BioFINDER-1 and WRAP cohorts were included in the study; of those, 171 Aß-positive participants were included in the main analyses. Exposures: Baseline P-tau181, P-tau217, P-tau231, glial fibrillary filament protein, and neurofilament light measured in plasma; CSF biomarkers in the BioFINDER-1 cohort, and PiB PET uptake in the WRAP cohort. Main Outcomes and Measures: The primary outcome was longitudinal measures of cognition (using the Mini-Mental State Examination [MMSE] and the modified Preclinical Alzheimer Cognitive Composite [mPACC]) over a median of 6 years (range, 2-10 years). The secondary outcome was conversion to AD dementia. Baseline biomarkers were used in linear regression models to predict rates of longitudinal cognitive change (calculated separately). Models were adjusted for age, sex, years of education, apolipoprotein E ε4 allele status, and baseline cognition. Multivariable models were compared based on model R2 coefficients and corrected Akaike information criterion. Results: Among 171 Aß-positive CU participants included in the main analyses, 119 (mean [SD] age, 73.0 [5.4] years; 60.5% female) were from the BioFINDER-1 study, and 52 (mean [SD] age, 64.4 [4.6] years; 65.4% female) were from the WRAP study. In the BioFINDER-1 cohort, plasma P-tau217 was the best marker to predict cognitive decline in the mPACC (model R2 = 0.41) and the MMSE (model R2 = 0.34) and was superior to the covariates-only models (mPACC: R2 = 0.23; MMSE: R2 = 0.04; P < .001 for both comparisons). Results were validated in the WRAP cohort; for example, plasma P-tau217 was associated with mPACC slopes (R2 = 0.13 vs 0.01 in the covariates-only model; P = .01) and MMSE slopes (R2 = 0.29 vs 0.24 in the covariates-only model; P = .046). Sparse models were identified with plasma P-tau217 as a predictor of cognitive decline. Power calculations for enrichment in hypothetical clinical trials revealed large relative reductions in sample sizes when using plasma P-tau217 to enrich for CU individuals likely to experience cognitive decline over time. Conclusions and Relevance: In this study, plasma P-tau217 predicted cognitive decline in patients with preclinical AD. These findings suggest that plasma P-tau217 may be used as a complement to CSF or PET for participant selection in clinical trials of novel disease-modifying treatments.
Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Humanos , Feminino , Idoso , Pessoa de Meia-Idade , Masculino , Doença de Alzheimer/líquido cefalorraquidiano , Estudos Longitudinais , Estudos Prospectivos , Peptídeos beta-Amiloides/metabolismo , Tomografia por Emissão de Pósitrons , Biomarcadores , Proteínas tau/líquido cefalorraquidianoRESUMO
Background: Genetic scores for late-onset Alzheimer's disease (LOAD) have been associated with preclinical cognitive decline and biomarker variations. Compared with an overall polygenic risk score (PRS), a pathway-specific PRS (p-PRS) may be more appropriate in predicting a specific biomarker or cognitive component underlying LOAD pathology earlier in the lifespan. Objective: In this study, we leveraged 10 years of longitudinal data from initially cognitively unimpaired individuals in the Wisconsin Registry for Alzheimer's Prevention and explored changing patterns in cognition and biomarkers at various age points along six biological pathways. Methods: PRS and p-PRSs with and without apolipoprotein E ( APOE ) were constructed separately based on the significant SNPs associated with LOAD in a recent genome-wide association study meta-analysis and compared to APOE alone. We used a linear mixed-effects model to assess the association between PRS/p-PRSs and global/domain-specific cognitive trajectories among 1,175 individuals. We also applied the model to the outcomes of cerebrospinal fluid biomarkers for beta-amyloid 42 (Aß42), Aß42/40 ratio, total tau, and phosphorylated tau in a subset. Replication analyses were performed in an independent sample. Results: We found p-PRSs and the overall PRS can predict preclinical changes in cognition and biomarkers. The effects of p-PRSs/PRS on rate of change in cognition, beta-amyloid, and tau outcomes are dependent on age and appear earlier in the lifespan when APOE is included in these risk scores compared to when APOE is excluded. Conclusion: In addition to APOE , the p-PRSs can predict age-dependent changes in beta-amyloid, tau, and cognition. Once validated, they could be used to identify individuals with an elevated genetic risk of accumulating beta-amyloid and tau, long before the onset of clinical symptoms.
RESUMO
INTRODUCTION: Our objective was determining the optimal combinations of cerebrospinal fluid (CSF) biomarkers for predicting disease progression in Alzheimer's disease (AD) and other neurodegenerative diseases. METHODS: We included 1,983 participants from three different cohorts with longitudinal cognitive and clinical data, and baseline CSF levels of Aß42, Aß40, phosphorylated tau at threonine-181 (p-tau), neurofilament light (NfL), neurogranin, α-synuclein, soluble triggering receptor expressed on myeloid cells 2 (sTREM2), glial fibrillary acidic protein (GFAP), YKL-40, S100b, and interleukin 6 (IL-6) (Elecsys NeuroToolKit). RESULTS: Change of modified Preclinical Alzheimer's Cognitive Composite (mPACC) in cognitively unimpaired (CU) was best predicted by p-tau/Aß42 alone (R2 ≥ 0.31) or together with NfL (R2 = 0.25), while p-tau/Aß42 (R2 ≥ 0.19) was sufficient to accurately predict change of the Mini-Mental State Examination (MMSE) in mild cognitive impairment (MCI) patients. P-tau/Aß42 (AUC ≥ 0.87) and p-tau/Aß42 together with NfL (AUC ≥ 0.75) were the best predictors of conversion to AD and all-cause dementia, respectively. DISCUSSION: P-tau/Aß42 is sufficient for predicting progression in AD, with very high accuracy. Adding NfL improves the prediction of all-cause dementia conversion and cognitive decline.
Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Humanos , Estudos de Coortes , Proteínas tau/líquido cefalorraquidiano , Doença de Alzheimer/diagnóstico , Doença de Alzheimer/líquido cefalorraquidiano , Biomarcadores/líquido cefalorraquidiano , Disfunção Cognitiva/diagnóstico , Disfunção Cognitiva/líquido cefalorraquidiano , Peptídeos beta-Amiloides/metabolismoRESUMO
Blood biomarkers indicative of Alzheimer's disease (AD) pathology are altered in both preclinical and symptomatic stages of the disease. Distinctive biomarkers may be optimal for the identification of AD pathology or monitoring of disease progression. Blood biomarkers that correlate with changes in cognition and atrophy during the course of the disease could be used in clinical trials to identify successful interventions and thereby accelerate the development of efficient therapies. When disease-modifying treatments become approved for use, efficient blood-based biomarkers might also inform on treatment implementation and management in clinical practice. In the BioFINDER-1 cohort, plasma phosphorylated (p)-tau231 and amyloid-ß42/40 ratio were more changed at lower thresholds of amyloid pathology. Longitudinally, however, only p-tau217 demonstrated marked amyloid-dependent changes over 4-6 years in both preclinical and symptomatic stages of the disease, with no such changes observed in p-tau231, p-tau181, amyloid-ß42/40, glial acidic fibrillary protein or neurofilament light. Only longitudinal increases of p-tau217 were also associated with clinical deterioration and brain atrophy in preclinical AD. The selective longitudinal increase of p-tau217 and its associations with cognitive decline and atrophy was confirmed in an independent cohort (Wisconsin Registry for Alzheimer's Prevention). These findings support the differential association of plasma biomarkers with disease development and strongly highlight p-tau217 as a surrogate marker of disease progression in preclinical and prodromal AD, with impact for the development of new disease-modifying treatments.