RESUMO
Perylene diimides (PDIs) have garnered attention as organic photocatalysts in recent years for their ability to drive challenging synthetic transformations, such as aryl halide reduction and olefin iodoperfluoroalkylation. Previous work in this area employs spectator pendant groups attached to the imide nitrogen positions of PDIs that are only added to impart solubility. In this work, we employ electron-rich ammonium iodide or ammonium hydroxide pendant groups capable of self-n-doping the PDI core to form radical anions (R â¢- ) and dianions (D â¢â¢2- ). We observe R â¢- formation is favored at low concentrations where aliphatic linkers are able to freely rotate, while D â¢â¢2- formation is favored at elevated concentrations likely due to Coulombic stabilization between adjacent chromophores in a similar manner to that of Kasha exciton stabilization. Cyclic voltammetric measurements are consistent with steric encumbrance increasing the Lewis basicity of anions through Coulombic destabilization. However, sterics also inhibit dianion formation by disrupting aggregation. Finally, femtosecond transient absorption measurements reveal that low wavelength excitation (400 nm) preferentially favors the excitation of R â¢- to the strongly reducing doublet excited state 2[R â¢- ]*. In contrast, higher wavelength excitation (520 nm) favors the formation of the singlet excited state 1[N]*. These findings highlight the importance of dopant architecture, counterion selection, excitation wavelength, and concentration on R â¢- and D â¢â¢2- formation, which has substantial implications for future photocatalytic applications. We anticipate these findings will enable more efficient systems based on self-n-doped PDIs.
RESUMO
Photoexcitation of the charge transfer band of electron donor-acceptor complexes composed of toluene and 1,2,4,5-tetracyanobenzene yields organic radical ion pairs whose ultrafast reactive dynamics are determined by equilibrium solvent properties. A comparative study of ultrafast reaction rates in a series of alkane alcohols identified their dependence on the local polarizability and hydrogen bond donating/accepting character of the solvent. Because of the rapid and efficient equilibration of these radical ion pairs into solvent-separated species, simple modifications to bulk conditions can be used as a means to selectively alter their decay rates. Selectively altering distinct stages in this photochemical cycle via cosolutes or additives is a valuable step toward understanding and controlling the reactivity of organic radical ions in complex environments.
Assuntos
Íons , Ligação de Hidrogênio , SolventesRESUMO
Dicer-2 cleaves double-stranded RNA into siRNAs in a terminus-dependent manner as part of D. melanogaster's RNA interference pathway. Using ultrafast fluorescence, we probe the local environment of chromophores at the dsRNA terminus upon binding by Dicer-2 and interrogate the effects of Loquacious-PD, an accessory protein. We find substrate-selective modes of molecular recognition that distinguish between blunt and 3'overhang termini, but whose differences are greatly reduced by Loquacious-PD. These results connect the molecular recognition properties of Dicer-2 to its selective processing of dsRNAs with different termini and to its need for Loquacious-PD to efficiently produce endogenous siRNAs.
Assuntos
Proteínas de Drosophila/metabolismo , RNA Helicases/metabolismo , RNA de Cadeia Dupla/metabolismo , Proteínas de Ligação a RNA/metabolismo , Ribonuclease III/metabolismo , Animais , Carbocianinas/química , Drosophila melanogaster/enzimologia , Corantes Fluorescentes/química , RNA de Cadeia Dupla/químicaRESUMO
Some RIG-I-like receptors (RLRs) discriminate viral and cellular dsRNA by their termini, and Drosophila melanogaster Dicer-2 (dmDcr-2) differentially processes dsRNA with blunt or 2 nucleotide 3'-overhanging termini. We investigated the transient kinetic mechanism of the dmDcr-2 reaction using a rapid reaction stopped-flow technique and time-resolved fluorescence spectroscopy. Indeed, we found that ATP binding to dmDcr-2's helicase domain impacts association and dissociation kinetics of dsRNA in a termini-dependent manner, revealing termini-dependent discrimination of dsRNA on a biologically relevant time scale (seconds). ATP hydrolysis promotes transient unwinding of dsRNA termini followed by slow rewinding, and directional translocation of the enzyme to the cleavage site. Time-resolved fluorescence anisotropy reveals a nucleotide-dependent modulation in conformational fluctuations (nanoseconds) of the helicase and Platform-PAZ domains that is correlated with termini-dependent dsRNA cleavage. Our study offers a kinetic framework for comparison to other Dicers, as well as all members of the RLRs involved in innate immunity.
Assuntos
Trifosfato de Adenosina/química , Proteínas de Drosophila/química , Drosophila melanogaster/química , RNA Helicases/química , Ribonuclease III/química , Trifosfato de Adenosina/metabolismo , Animais , CinéticaRESUMO
The UV photolysis of bimolecular charge transfer complexes is employed to yield reactive radical ions in their solvent-equilibrated electronic ground state. In polar protic media, noncovalent complexes of 1,2,4,5-tetracyanobenzene and toluene undergo efficient, ultrafast dissociation to ion pairs and equilibrate with their solvent environment before the resulting radical ions engage in electron transfer and proton abstraction on subnanosecond time scales. Solvent molecules play a critical role in these reactive pathways and in the dissociation and relaxation processes that precede them. We report a clear separation of time scales for these relaxation and reactive processes, which implies that solvent-solute interactions can be used as a tool for tuning the reaction pathways of equilibrated radical ions in solution.